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ABSTRACT
As heterogeneous designs take over the world of hardware designs,
the data bus plays a vital role in interconnecting hosts and accelera-
tors. While past works have emphasized increasing communication
bandwidth for data-hungry workloads, this work focuses on opti-
mizing latency for latency-sensitive acceleration applications. We
first study the pattern of various accelerator workloads and demon-
strate that various optimization opportunities exist to reduce the
communication latency overhead. To help developers exploit these
opportunities, we introduce Zipper—a protocol optimization layer
that reduces communication costs by enabling device and request
level parallelism and exploiting data locality for existing bus stan-
dards. We applied Zipper to two domains and implemented the
end-to-end system on a heterogeneous hardware platform with
an integrated FPGA. Our physical experiments show that Zipper
provides 8x speedup for one accelerator with 4.3% logic overhead
and 1.5x speedup for another with 0.9% logic overhead.

CCS CONCEPTS
• Computer systems organization→ Heterogeneous (hybrid)
systems; • Hardware→ Buses and high-speed links; • Networks
→ Network on chip.
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1 INTRODUCTION
Data buses are vital in connecting heterogeneous components in
today’s hardware designs. While high-performance data buses have
ramped up bandwidth over time, the access latency has not been
scaling on par because link traversal scales poorly as the technology
node shrinks [44]. A recent study [26] shows that the round-trip
latency through the popular PCI Express Gen 3.0 [2] or Intel Ultra

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697546

Path Interconnect [21] languishes at the micro-second (𝜇𝑠) scale.
Many applications cannot tolerate 𝜇𝑠-level latencies, leading tomost
of these latencies being fully exposed [8]. As such, long-latency bus
transactions hinder the broad deployment of a wider spectrum of
applications and accelerators in the production environment.

Although communication latency is hard to reduce through im-
proved physical designs, we observed two significant opportunities
for latency-tolerant optimization. First, there is parallelism at both
the request and the device level. We can enhance host and accel-
erator utilization by enabling out-of-order and parallel execution;
second, many compute kernels exhibit significant temporal locality:
the results of previous requests often become inputs for subsequent
requests. We can exploit this locality to reduce data movement.

To capitalize on latency-tolerant optimization opportunities in a
real production system, we desire a generic and reusable solution
that provides the following benefits:

• Simple parallelism model: Data dependencies can exist
between host and accelerator instructions or within acceler-
ator instructions. Harvesting parallelism requires a dynamic
scheduling mechanism that works across ISAs and device
boundaries.
• Efficient data tracking: Since data is continually moved be-
tween host and accelerator, the system needs to precisely and
efficiently track the location of the data to ensure functional
correctness.
• Reduced design complexity: Due to the sheer size of possi-
ble accelerator designs and platforms, customizing APIs and
compilers would be a heavy technology burden for ordinary
system developers. Major vendors only provide function-
level APIs [28, 43], which makes adding compiler support
even more difficult. A portable and extensible solution is
necessary to make latency optimizations accessible, scalable,
and agnostic to the underlying bus standards.

To deliver these features, we propose Zipper. Working on top of
existing data buses, Zipper is a dynamic protocol-level optimization
layer that reduces bus transaction latency between heterogeneous
devices connected through a high-performance data bus. It dynam-
ically analyzes data dependencies, tracks data movement across
devices, and exploits locality and parallelism as a program proceeds.
Zipper uses a software-defined request scheduling approach that re-
quires no modification to application logic, compilers, or data buses.
Zipper’s runtime library identifies temporal locality and parallel
execution opportunities. Then, it schedules optimized accelerator
requests to enable resource-constraint-aware parallelism and data
reuse. The implementation details of this runtime library are hid-
den from developers, and the developers can use encapsulated data
types as if they are host-native. For hardware, Zipper offers a small

https://orcid.org/0000-0002-9522-8934
https://orcid.org/0009-0000-5810-1347
https://orcid.org/0000-0002-0181-0852
https://doi.org/10.1145/3658617.3697546
https://doi.org/10.1145/3658617.3697546
https://doi.org/10.1145/3658617.3697546


ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Shibo Chen, Hailun Zhang, and Todd Austin

request buffer to cache data and enables out-of-order execution of
requests with data reuse.

In Section 4.1, two FPGA-based case studies are presented and
shown to benefit significantly from Zipper. Our experiments show
that Zipper provides uniformly good end-to-end application speedups,
with as much as 8x speedup for one case study.

We summarize the contributions of this work as follows:
• We detail the design of Zipper, a general protocol optimiza-
tion layer to optimize bus transaction latency for heteroge-
neous system communication over existing high-performance
buses. The optimization layer exploits locality and paral-
lelism opportunities that are currently overlooked without
making demands on the data bus or programmers.
• We show a real-world FPGA-based implementation of Zipper,
built over Intel’s QuickPath Interconnect (QPI) for CPU-
integrated FPGAs. We dive into the hardware and runtime
software components implemented for this platform.
• We present two real-world FPGA-based case studies with
Zipper in a production environment and show significant
application-level performance improvements (as much as
8x), with modest area overheads (of less than 5% increase
in logic). Zipper exploits significant temporal locality and
transaction parallelism in both studies, even for designs with
only a 4-entry request scheduling window.

Zipper is open-sourced at https://github.com/zipper-bus-optimizations
and ready to deploy in real production environments that connect
accelerators using AXI, CCI-P, or CXL data buses.

2 DISCOVERING BUS OPTIMIZATION
OPPORTUNITIES

This section discusses three key opportunities that we focus on to
optimize bus communication latency.

2.1 Host-Accelerator Communication
Convention

After the host connects to the accelerator, the developer creates a
shared memory space between them to pass inputs and compute
results. To kick off the kernel, the host writes inputs into the shared
memory and issues instructions with metadata (i.e., input starting
address, result write back address, etc.) to the accelerator through,
typically, Memory Mapped Input Output (MMIO). After receiving
the instruction, the accelerator fetches the input data from the
shared memory, writes back the result to the specified write-back
address, and notifies the host. This is usually agnostic to physical
implementations (e.g., UPI [21], PCIe [2], Infinity [5], etc.) or data
transfer protocols (e.g., CCI-P [20], CXL [30], AXI [7], etc.).

2.2 Optimization Opportunities
In this section, we use a reduction algorithm over an abstract
hardware-accelerated operator ⊗, as shown in Algorithm 1, to
demonstrate existing latency-tolerant opportunities. In this algo-
rithm, we want to calculate the product of the 2𝑛 inputs over a
hardware accelerated operator ⊗ and store the result to the write-
back address. The accelerator is attached to the host system, which
runs the algorithm by accessing high-performance data buses.

Figure 1 shows the data-dependence graph of Algorithm 1 and
the optimizations to eliminate dependencies, exploit locality, and

Algorithm 1: A reduction algorithm with operator ⊗. The
offload instruction sends the indicated operation to the at-
tached accelerator.
Data: An array of 2n elements: arr[2n], A writeback address

𝑎𝑑𝑑𝑟𝑤𝑟

Result: y = summation of all elements in arr over special
operator ⊗

𝑖 ← 0; 𝑟𝑒𝑠𝑢𝑙𝑡 ← 1;
while 𝑖 < (2𝑛 − 1) do

1: a← load(Mem[arr+i]);
2: b← load(Mem[arr+i+1]);
3: offload(a⊗b);
4: c← fetch(a⊗b);
5: offload(c⊗result);
6: result← fetch(c⊗result);
7: i← i+2;

end
8: Mem[𝑎𝑑𝑑𝑟𝑤𝑟 ]← result

enable parallelism. Starting with the unoptimized implementation
in Figure 1a, the developer partitions the instructions based on the
devices’ capabilities: execute instruction 1, 2, 4, and 6-8 on the host,
and offload instruction 3, 5 to the accelerator. A stock compiler
cannot optimize cross-device dependencies; thus, the unoptimized
system has to execute instructions sequentially in program order.
As a result, the host always waits for the accelerator to complete
computation and loads the result from the shared memory (per-
formed by fetch instructions 4 and 6) before it can move on to the
next instruction and/or use the result in subsequent requests.

2.2.1 Exploitable Temporal Locality. We notice that not every de-
pendency is created equal. A cross-device data dependency is much
costlier to resolve than a local data dependency due to the bus
communication overhead. Based on this observation, we eliminate
cross-device dependencies and replace them with local ones when-
ever possible. That is, instruction 5’s two operands are the result
from instruction 3 and its result from the last iteration. Therefore, as
shown in Figure 1b, instruction 5 does not need to wait for instruc-
tion 4 on the host side to complete to get its input from the host.
Rather, we can remove this cross-device dependency by directly
forwarding the results from the previous requests 3 and 5. By relo-
cating cross-device dependencies, we can avoid much inter-device
communication and thus reduce communication overhead.

2.2.2 Device-level Parallelism. Instructions 4 and 6 block instruc-
tions that fetch results from the shared memory. After the depen-
dencies have been relocated, instructions 4 and 6 can be moved
off the critical path. As shown in Figure 1c, the host can continue
execution while the accelerator is working on the received requests.
Being non-blocking, the host can run ahead to fetch new data for
future accelerator requests. As long as there is no data dependency
across devices, the two devices can run in parallel and do not need
to synchronize.

2.2.3 Request-level Parallelism. After relocating the data depen-
dencies and enabling device-level parallelism, we can completely
offload a sequence of requests to the accelerator. We can also extract
request-level parallelism locally on the accelerator to maximize the
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Figure 1: Latency-tolerant optimizations for the instruction sequence shown in Algorithm 1.

performance gain. In our example, since instruction 3 is indepen-
dent of previous accelerator instructions, shown in Figure 1d, it can
bypass previous requests or interleave with other requests. The only
limitations would be the number of requests the accelerator can
handle simultaneously and the accelerator’s compute throughput.

3 ARCHITECTING ZIPPER OPTIMIZATIONS
To enable optimizations discussed in Section 2, we propose Zipper.
Zipper is a protocol layer that resides between the physical bus and
the application logic, and thus, it does not require any changes to
the compiler, compute kernel, or the underlying data bus. Zipper
is a drop-in optimization that significantly reduces the exposed
latency that is common for high-performance buses, essentially
widening the applicability of these emerging bus technologies.

3.1 Overview of Zipper
Zipper uses a set of communication semantics that captures the
locality and dependency information to connect the host and ac-
celerator. Zipper adds a request buffer table to the accelerator that
tracks the status of operands and caches recent request results.
On the host side, a runtime library analyzes data dependency and
catches the data reuse opportunities by observing and tracking
accelerator requests. The runtime library also manages commu-
nication between the host and the accelerator and hides tedious
implementation details from software developers. The rest of this
section will describe Zipper’s communication protocol, hardware
structure, and runtime library.

3.2 Host-Accelerator Communication Protocol
In Zipper, the host sends requests to the accelerator through MMIO
while communicating input operands and results with the accel-
erator through shared memory. The number of fields and the bits
in each field can vary depending on the use case. As a rule of
thumb, each request should include Instruction, Write-back
Address, and Operand Information. Each request can have mul-
tiple operands. Each operand may reside in the shared memory or
the Zipper hardware structure.

The shared memory is the communication channel between the
host-accelerator for input operands and results. We partition the

Instruction-
level Kernel

Index Inst. Op. 1 Mode Op. 2 Result

0 ⊗ REQ Addr7 MEM

1

2

3 ⊗ Addr5 MEM Addr6 MEM

Memory 
Controller

1

3

value

Execution 
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3

Receive Request

2 Read Operand 
from Memory

3 Update Operand 
Value

4 Dispatch to 
Compute Kernel
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Result

6 Forward Result

7 Write               
to Memory

value

value

Data Bus

Figure 2: Zipper hardware structure and life cycle of an ac-
celerator request.

shared memory into an operand partition and a result partition. The
input operands are continuously placed in the operand partition
and wrapped over to reuse the old memory when it reaches capacity.
The result partition maintains the bijection with the accelerator-
side buffer table entries. For input operands smaller than the size of
one memory request granularity, Zipper packs multiple operands
for different requests into one cache line to reduce the number of
accesses to the memory. Zipper software attaches a version bit to
each operand when issuing the request. The Zipper accelerator
verifies the freshness of the operand by matching the version bit
with the version bit it receives from the runtime library.

3.3 Zipper Hardware Structure
Zipper hardware is on the accelerator side and handles requests it
receives from the host. It consists of four parts, shown in Figure 2:
a request buffer table, an execution scheduler, a memory controller,
and the accelerator. The memory controller is platform-specific, and
the compute kernel is user-specific. Zipper does not make intrusive
modifications to these two components to work.

Zipper uses the request buffer table and the execution scheduler
to enable request-level parallelism. In 1○, when Zipper hardware
receives a request from its software counterpart, typically through
MMIO, it will first store the request information in the request
buffer table. The request buffer table stores and tracks all the details
on pending and recently completed requests: the instruction, the
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status of each operand, the write-back address, etc. The request
buffer table can be sized as needed. We will discuss the impact of
buffer size in Section 5.3. The execution scheduler decides which
request is ready for execution and can dispatch instructions out-of-
order. The scheduling logic prioritizes older requests when multiple
requests are ready to be dispatched.

The request buffer table caches recent results until new requests
overwrite the entries. Zipper hardware then reconstructs the data
dependency chain based on the information embedded in the re-
quests. For each accelerator instruction, Zipper fetches their values
based on the information provided in the request. 2○ If the operand
is in memory, Zipper issues a read request to the memory controller
and marks it as "in fetch" to avoid duplicated access. If the operand
comes from a prior request, Zipper either fetches the value if it is
ready in the buffer table or waits until the prior request has been
completed. 4○ Once all operands are resolved, Zipper marks this
request as ready to be dispatched. 5○ When the computation is
done, Zipper stores the results back in the buffer table and writes
the results into their corresponding write-back address in the mem-
ory, shown in 7○. 6○ If there are pending requests whose inputs
are dependent on the newly completed request, Zipper directly
forwards the value when the result is ready.

3.4 Zipper Runtime Library
Zipper provides a non-blocking host-side interface that tolerates
multiple pending requests within the accelerator’s resource lim-
itations. On the host side, Zipper conducts dependency analysis,
request scheduling, and result fetching with a software runtime li-
brary. Zipper provides packaged data classes to host applications as
if they were host-native types. These data classes encapsulate over-
ridden functions and necessary metadata. This approach provides
flexibility and dynamic scheduling capabilities without compiler
modification. Figure 3 shows Zipper’s software data structures and
corresponding updates when behaving different functions.

The Zipper runtime library maintains two data structures to
track data objects and communicate with the accelerator: class
objects and result lists. The class objects track the status of the
requests and the results if the requests are complete.

The result lists track all the software data objects associated with
each hardware buffer table entry. When Zipper fetches the results
back to the host or clears a table entry, it iterates through the list
and updates all relevant data objects. This enables Zipper to track
multiple in-flight requests.

We use a code snippet shown in Figure 2 to demonstrate the
operations of the Zipper runtime library. The code first calculates
an accelerator request and its result 𝑎 with input from the host and
then calculates another variable 𝑏, reusing 𝑎’s value. After these
two accelerator requests, it re-assigns 𝑏 to 𝑎. Lastly, it retrieves the
𝑎’s value from the accelerator back to the host.

Algorithm 2 shows the process of Zipper runtime library fetching
results and sending new requests to the accelerator.

3.4.1 Issuing New Requests. Figure 3a shows Zipper issuing a new
accelerator request to the accelerator. 1○Within the context shown
in the figure, Zipper registers object 𝑎 into an available slot in result
lists. 2○ Zipper will store the input operands𝑚 and 𝑛 in the shared
memory and send their relative location to the accelerator. In the
last step 4○, Zipper updates 𝑎’s validity as false and marks it to

Algorithm 2: Procedures to issue new requests in Zipper
runtime library. BUF_TBL = buffer table. MEM = memory.
Data: A list of 𝑛 input operands 𝑜𝑝𝑠 and Instruction 𝑖𝑛𝑠𝑡

Result: An object 𝑟 that tracks the result
𝑟 .𝑣𝑎𝑙𝑖𝑑 ← false;
𝑟 .𝑖𝑛𝐴𝑐𝑐𝑙 ← true;
𝑟 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← nextSlot + +;
if 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡𝑠 [𝑛𝑒𝑥𝑡𝑆𝑙𝑜𝑡] .𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 then

for 𝑜𝑏 𝑗 ← 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡𝑠 [𝑛𝑒𝑥𝑡𝑆𝑙𝑜𝑡] do
𝑜𝑏 𝑗 .𝑓 𝑒𝑡𝑐ℎ𝑅𝑒𝑠𝑢𝑙𝑡 ;

end
end
𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝑟𝑒𝑞;
𝑟𝑒𝑞.𝑖𝑛𝑠𝑡 ← 𝑖𝑛𝑠𝑡 ;
for 𝑖 ← (0→ 𝑛 − 1) do

if 𝑜𝑝𝑠 [𝑖] .𝑖𝑛𝐴𝑐𝑐𝑙 then
𝑟𝑒𝑞.𝑜𝑝𝑠 [𝑖] .𝑚𝑜𝑑𝑒 ← 𝐵𝑈 𝐹_𝑇𝐵𝐿;
𝑟𝑒𝑞.𝑜𝑝𝑠 [𝑖] .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑜𝑝𝑠 [𝑖] .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛;

end
else

𝑟𝑒𝑞.𝑜𝑝𝑠 [𝑖] .𝑚𝑜𝑑𝑒 ← 𝑀𝐸𝑀 ;
𝑟𝑒𝑞.𝑜𝑝𝑠 [𝑖] .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← 𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑆𝑙𝑜𝑡 ;
𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑆𝑙𝑜𝑡 ←(𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑆𝑙𝑜𝑡 +
1) %𝑀𝑎𝑥𝑁𝑢𝑚𝑂𝑓 𝑆𝑙𝑜𝑡𝑠 ;

end
end
𝑠𝑒𝑛𝑑 𝑟𝑒𝑞;
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟 ;

be inside the accelerator at location 3. After this step, the program
can continue onto the next host instruction or accelerator request.

3.4.2 Enabling Accelerator-Side Caching. In Figure 3b, Zippermakes
another accelerator request. Since no empty slot is available, Zipper
first clears the oldest entry as shown in Step 0○. Zipper forces each
object mapped to slot 1 to fetch its value to the host memory if they
have not already and update them as not in the accelerator’s buffer
anymore. During the analysis stage, Zipper detects variable 𝑎 is at
location 3 of the accelerator buffer and its value can be reused, so
Zipper will not write 𝑎 to the shared memory nor need to fetch
𝑎’s value back. Instead, Zipper instructs the hardware to get 𝑎’s
value directly from buffer table slot 3. In this way, Zipper detects
the relocation opportunities on the host and utilizes the hardware
buffer to exploit them. We then append 𝑏 to the result lists and
update its metadata similar to what we did to 𝑎 in the last request.

3.4.3 Object Reassignment. When reassigning an object to track
another object, as in Figure 3c, Zipper changes the data structure
to reflect this reassignment. We reassign 𝑏 to variable 𝑎. 1○ Zipper
copies 𝑎’s metadata to 𝑏 and moves 𝑏 away from its original slot in
the result lists to the same slot as 𝑎. Similarly, Zipper removes the
object from the result list when the object is getting deleted.

3.4.4 Lazy Fetch. Zipper never proactively retreives results until
the value is needed. As the code execution progresses, the host
eventually asks for the value of 𝑎 to proceed, shown in Figure 3d. In
this case, Zipper fetches 𝑎’s result from its tracking location 3. If the
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Figure 3: Zipper software data structure and scheduling.

result is not ready, the host will stall due to hard dependency. Once
Zipper fetches the value from the shared memory, it will update 𝑎’s
value and its metadata. Zipper will also update all the objects that
are tracking location 3. However, 𝑎’s value is still in the accelerator
buffer for future use as no new request evicts 𝑎 yet.

4 REAL-WORLD EXPERIMENTAL SETUP
This section discusses the case studies and hardware setup that
are representative of the production environment. We conducted
our experiments on Intel HARPv2 [13] with an in-package FPGA.
The system contains a 64K FPGA-side coherent cache. The Zipper-
augmented software runs on the Intel Xeon E5-2699v4 at 2.2 GHz,
and the Zipper-enabled hardware kernels run on the Arria10 FPGA.
The host and the FPGA are connected with Intel QuickPath Inter-
connect using Core Cache Interface.

4.1 Real-World Case Studies
We evaluated Zipper on two applications that rely on CPU and ac-
celerator to compute and are highly sensitive to the communication
latency between the two devices:

(1) We replaced the floating point representation in the NASA
Parallel Benchmark (NPB) [11] with a Posit32 number rep-
resentation. NPB is a high-performance scientific comput-
ing benchmark, including algorithms that require both per-
formance and precisions, such as Fast Fourier Transform
(FFT) [18] and MultiGrid (MG) [42]. Posit is a 32-bit number
format that achieves better precision than floating points

but currently lacks native hardware support. All posit com-
putations are computed with a hardware kernel.

(2) We implemented sequestered encyption (SE) based hardware
isolation support for the integer subset of VIP-Bench [10].
VIP-Bench is a set of basic algorithms and applications (i.e.,
bubble-sort [15], Tiny Encryption Algorithm (TEA) [41],etc.)
implemented in a data-oblivious manner where only the
SE hardware enclave can see the plaintext values of the
secrets [9].We prototyped the SE enclave on an FPGA, and all
privacy-enhanced operators are offloaded to the SE enclave.

These two latency-sensitive applications represent interesting
privacy and HPC acceleration opportunities that benefit greatly
from fine-grained offloading. For optimal performance-area trade-
offs, we used an 8-entry buffer table design for the Posit32 acceler-
ator and a 2-entry design for the SE enclave design. In the baseline
design, each request is issued and executed sequentially.

5 EXPERIMENTAL EVALUATION
This section provides an analysis of the performance speedup, area
overhead, impact of various optimizations, request buffer table sizes,
workload profiles, and other relevant design aspects.

5.1 Performance Speedup and Logic Overhead
Figure 4 shows the relative performance of Zipper over the base-
line design. The figure also provides insights into each feature’s
contribution to the overall performance. On average, Zipper pro-
vides 8x speedup for NPB with Posit32 and 1.5x for VIP-Bench
with the SE. Dependency relocation provides the most significant
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Figure 4: Relative performance of Zipper and various de-featured Zipper over the baseline. RLP = Request-level Parallelism.

0%

20%

40%

60%

80%

100%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation
RLP + Memory Coalescing Zipper

(a) NPB with Posit32

0%

20%

40%

60%

80%

100%

Only RLP RLP + Dependency Relocation
RLP + Memory Coalescing Zipper

(b) VIP-Bench with SE Enclave

Figure 5: Comparison of the number of bus transactions by accelerator between Zipper, de-featured Zipper, and the baseline.

speedup, while request-level parallelism and memory coalescing
each provide a smaller but noticeable speedup on top of each other.

We synthesized our design with Intel Quartus Pro 16.0.0.211 onto
the targeted FPGA platform. We compute the logic overhead by
taking the added Zipper logic over the accelerator and the existing
bus control logic. The logic overhead of Zipper is only 4.3% for the
8-entry Zipper Posit32 design over the baseline design and 0.9% for
the 2-entry Zipper SE enclave design over the baseline design.

5.2 Accelerator Memory Access
Zipper’s performance benefits greatly from reducing accelerator
memory demands by exploiting temporal locality and memory
coalescing. Figure 5 shows the percentage of the bus transactions
Zipper and other de-featured design options make over the baseline
design.

For NPB with Posit32, Zipper reduces the accelerator’s bus trans-
actions by 77% from the baseline. Request-level parallelism enables
out-of-order execution but does not reduce any memory access.
Since Zipper can pack 8 input operands into one cache line, mem-
ory coalescing reduces 63% of bus transactions over the baseline.
Dependency relocation exploits temporal locality and data reuse,
reducing 34% of bus transactions over the baseline.

Since operands are larger in the VIP-Bench with SE enclave
design, Zipper cannot pack the operands as tight as with Posit32

numbers. Therefore, it is more likely that the operands for the same
request span over two cache lines, which leads to more memory
access and fewer opportunities for memory coalescing. Zipper re-
duces 46% of the bus transactions while memory coalescing and
dependency relocation reduce 37% and 27% of the bus transactions
over the baseline SE enclave design, respectively.

5.3 Impact of Hardware Buffer Size
To study the optimal number of buffers for different workloads,
we analyzed the distance of the data dependency chain in Zipper
requests or the number of entries we need to provide for efficient
dependency relocation.

Our experiment results show that 91% and 92% of the temporal
locality can be captured with only four buffer entries for NPB and
VIP-Bench, respectively. Table 1 shows the number of requests
that can be processed in parallel, the percentage of results required
to be fetched back into the host memory, and the average time
distance (in microseconds) between the host issuing request and
the hosting using the request result. As we increase the number
of buffer entries, Zipper can exploit more parallelism while facing
diminishing returns. As Zipper harvests more operand reuse with
larger buffers, the results that need to be fetched decrease as more
request dependencies get relocated. The average time distance also
increases as fewer results are fetched back to the host, giving the
host more time to execute host-side codes in parallel. Note that
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Application Window Size
0 2 4 8

Exploitable parallelism
NPB w/ Posit 1 1.89 3.53 6.17
VIP-Bench w/ SE 1 1.87 2.69 3.94

Percentage of results to be fetched back
NPB w/ Posit 100% 45% 26% 22%
VIP-Bench w/ SE 100% 55% 21% 10%

Distance between issue and use
NPB w/ Posit 251.86 543.59 840.71 821.11
VIP-Bench w/ SE 65 136.68 1656.9 2243.7

Table 1: Zipper characteristics under different instruction
window sizes for two applications on average.
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Figure 6: Impact of different number of buffer table entries
on performance and area for Zipper. ALM = Adaptive Logic
Module.

this analysis assumes the system has perfect knowledge of the
instruction dependencies during runtime. In practice, Zipper always
fetches results back when the buffer entry gets recycled to ensure
correctness. A larger buffer gives more time to continue execution
until it needs to recycle a buffer entry.

We then analyzed the performance and logic overhead of various
sizes. The logic overhead is measured by the usage of adaptive logic
modules (ALM), the basic logic units in Intel FPGA families. We
construct our experiments around the buffer size of 4. The results
are shown in Figure 6. The logic overhead increases exponentially
as the size of the buffer increases because of the logic needed for
scheduling and storage for operands and results. For NPB with
Posit32, the speedup increases logarithmically as we put more en-
tries in the buffer table. However, VIP-Bench with SE Enclave’s
performance only increases slightly with more buffer entries. The
difference is attributed to the latency of each compute kernel. The
Posit32 kernel takes two cycles to complete an instruction, while
the SE Enclave kernel takes 24 cycles for each instruction. The SE
Enclave is more compute-bound to the kernel itself.

6 LIMITATIONS AND FUTUREWORK
While Zipper demonstrates tremendous performance improvement
over the baseline, there are additional improvements we can explore
as the continuation of this line of work:

• Request Reordering: Zipper leverages the optimization op-
portunities that applications present. However, there would
be more temporal locality by reordering the requests and ex-
ploiting operator commutativity and associativity. To achieve
this, Zipper can issue requests in batches after requests
within a scheduling window have been optimized.
• Multi-Agent Cooperation: We considered the scenario
with only one accelerator in this work. Multiple accelerators
can cooperate to complete the computation in a more com-
plex system. Zipper poises well to enable such extensions as
the developer can use optimized scheduling algorithms to
dispatch requests to different accelerators.

7 RELATEDWORKS
With the emergence of heterogeneous and large-scale systems,
communication latency between nodes has become a key focus.

There are four major approaches to tolerate latency: prefetch-
ing [1, 4, 6, 22, 23, 29, 31, 38], caching [12, 17, 25, 32, 36, 39], multi-
threading [3, 14, 34, 40], and relocating [16, 19, 24, 27, 33, 35, 37].
Prefetching predicts the memory access pattern and issues mem-
ory accesses before the data is used. This technique does not apply
to the challenge tackled in this paper because accelerator requests
often rely on host-side data-based control flow, making it hard to
issue in advance. Caching keeps data closer to the compute by
exploiting spatial and temporal locality. Being tailored specifically
to CPU-accelerator interactions, Zipper is more flexible and area-
efficient than cache-based designs.Multithreading hides access
latency by allocating the hardware resources to another thread
while waiting for the long-latency operation to complete. How-
ever, its benefits diminish when the operation is at or below the
microsecond level due to context switch overhead. Moreover, multi-
threading relies on having enough threads to schedule and focuses
on the throughput. In comparison, Zipper does not rely on switch-
ing to other work to occupy the host and significantly speeds up
the end-to-end latency. Relocating (i.e., in-memory/near-memory
computing) is a design philosophy that moves compute closer to
the data. However, even if placed near the memory, the system still
needs to tolerate the latency between the host and the accelerator.
As a result, this challenge is not directly addressed by relocation.

8 CONCLUSIONS
This paper details Zipper, a bus latency optimization framework
for latency-sensitive accelerated applications. By carefully track-
ing CPU-accelerator dependencies, Zipper can exploit device- and
request-level parallelism and temporal locality to significantly re-
duce exposed bus transaction latency. Zipper is implemented as
a protocol optimization layer over an existing bus interface. Min-
imal system or programmer support is required, as Zipper uses
runtime library support for dynamic scheduling and an additional
hardware structure for executing the requests from the host. Zip-
per is deployed on Intel’s HARPv2 platform, where two real-world
accelerated applications are examined with and without Zipper
optimizations. Zipper achieves a 1.5x-8x speedup with low logic
overheads for the two case studies presented. This work demon-
strates that protocol latency optimizations have significant promise
to reduce the exposed latency of high-performance buses and widen
their applicability to future application acceleration opportunities.
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