
Twine: A Chisel Extension for
Component-Level

Heterogeneous Design

Shibo Chen, Yonathan Fisseha, Jean-Baptiste Jeannin, Todd Austin
University of Michigan

The Death of Homogeneous Designs

2

Classical technological drivers are failing.

The future of computing beyond Moore’s Law, Volume: 378, Issue: 2166, DOI: (10.1098/rsta.2019.0061)
J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 6th edition, Morgan Kauffman, San Francisco, 2019.

CPU Performance Scaling is Dead.

Cost of Design is Exploding.

The Death of Homogeneous Designs

2

Classical technological drivers are failing.

The future of computing beyond Moore’s Law, Volume: 378, Issue: 2166, DOI: (10.1098/rsta.2019.0061)
J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 6th edition, Morgan Kauffman, San Francisco, 2019.

CPU Performance Scaling is Dead.

Cost of Design is Exploding.

Homogeneous Designs are No Longer Cost-Effective

The Era of Heterogeneous Designs

3

Increasing Amount of Hardware Designed,
Customized, and Tailored for Specific Applications.

Customized SoC Application-specific Hardware

Meeting Distinct Requirements

4

Various Algorithms Diverse Settings Different Technologies

Distinct Performance, Area, Power, and Cost Requirements

Different Designs, Topologies, Functionalities

Meeting Distinct Requirements

4

Various Algorithms Diverse Settings Different Technologies

Distinct Performance, Area, Power, and Cost Requirements

Different Designs, Topologies, Functionalities

How Do Developers Create New Designs?

The Zen of Heterogeneous Design

5

Existing
Components

Existing System

New
Components

New System

- Add New Stage
- Add New Functionalities
- Target New Application

- Use Component Libraries
- Reuse Components in Other

Designs

- Vectorize Functional Units
- Pipeline Operations
- Change Data Format

- Replicate Functional Units
- Widen Memory Bandwidth
- Add Additional Layers

Scale

Reuse Customize

Reconfigure

The Zen of Heterogeneous Design

5

Existing
Components

Existing System

New
Components

New System

- Add New Stage
- Add New Functionalities

- Use Component Libraries
- Reuse Components in Other

Designs

- Vectorize Functional Units
- Pipeline Operations
- Change Data Format

- Replicate Functional Units
- Widen Memory Bandwidth

Scale

Reuse Customize

Reconfigure

Modern Hardware Design Languages Should Help
Developers Efficiently Complete These Jobs

Our Solution: Twine

Twine is a Chisel extension for
component-level heterogeneous designs.

Twine supports essential features for heterogeneous design:

7

Standardize Control Interfaces (reusability, scalability)
High-level Operator for Composability (scalability, reconfigurability,
customizability)
Automate Control Coordination & Data Type Conversion (scalability,
reconfigurability)
Low Level Access to Chisel Primitives (reconfigurability, customizability)

Content

• Motivation

• Twine Features
• Standard Control Interfaces
• High-level Operator for Composability
• Control Coordination & Type Conversion Automation

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

12

Content

• Motivation

• Twine Features
• Standard Control Interfaces
• High-level Operator for Composability
• Control Coordination & Type Conversion Automation

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

13

Twine Standard Control Interfaces

• Interfaces define how a component communicates.
• Standardizing interfaces is a common practice.

• Many standard interfaces for coarse-grained components (e.g., AXI, PCIe).
• Too heavy for intra-accelerator communication.

• Naive approach: without standard control interfaces
• Inspect, examine, and adapt component interfaces every time.
• Automation is not straightforward, requiring significant designer effort and debugging

• Better approach: standard control interfaces
• Make component behaviors more predictable.
• Enable high-level automation.

14

Twine Standard Control Interfaces

• Declaration of a Twine Module Interface

• Four Standard Control Interfaces in Twine

• TightlyCoupledIOCtrl

• ValidIOCtrl

• DecoupledIOCtrl

• OutOfOrderIOCtrl

15

val in = IO(new ModuleInputType) // All data in-flow ports
val out = IO(new ModuleOutputType) // All data out-flow ports
val ctrl = IO(new ModuleCtrlType) // One of four standard control Interfaces

High

Flexibility

Low

High

Low

Complexity

Content

• Motivation

• Twine Features
• Standard Control Interfaces
• High-level Operator for Composability
• Control Coordination & Type Conversion Automation

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

19

High-level Operator for Composability

• New flow operator >>> to distinguish from the original Chisel wire
connection

• Producer >>> Consumer
• Supports all levels of granularity
• moduleA >>> moduleB, wireA >>> wireB, Bundle(wireA, wireB) >>> moduleA

• Focus on producer/consumer relations
• Producer: module that outputs completed values
• Consumer: module that takes values as inputs (or needs to know when a value has

been taken)

• Automatically inferred from the dataflow of the design

20

Content

• Motivation

• Twine Features
• Standard Control Interfaces
• High-level Operator for Composability
• Control Coordination & Type Conversion Automation

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

23

Automate Control Coordination &
Data Type Conversion

• Automatically generate system-level control logic
• Inferred based on dataflow and producer/consumer relations
• Mix-and-match across different interfaces
• Ability to manually control preserved

24

Automate Control Coordination &
Data Type Conversion

• Automatically generate system-level control logic
• Inferred based on dataflow and producer/consumer relations
• Mix-and-match across different interfaces
• Ability to manually control preserved

• Data Type Conversion
• Auto conversion between different data types (e.g., floating points <-> integers)
• Auto conversion between different port width (useful for vectorized components)

24

Automate Data Type Conversion

• Simple conversion logic is combinational and transparent
• e.g., Unsigned Integers <-> Signed Integers, Bitwidth expansion

• Complex conversion logic serves as a full converter module
• Floating point to integer conversion
• Serializer and de-serializer for vectorized components

26

Put Them Together

28

Assume there are modules A, B, C, and D. Module C is a vector module.

A

B

C

D

Implement one of four control interfaces 
- Predictable
- Enable high-level automation

 More Reusable

Chisel Compatible

High Level Specification

in >>> A
A >>> B >>> D.1
A >>> C >>> D.2
D >>> out

Design Automation
- Control Coordination
- Data Type Conversion

in out

Content

• Motivation

• Twine Features

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

29

Build Upon Existing Infrastructure & Preserve All
Features

30

Chisel Syntax,
Semantics, and

Primitives

Chisel Utils (Pipe, etc.)

Twine Syntax,
Semantics, Types,

and Primitives

Twine Utils

Overloaded
Operators

Twine Elaboration Pipeline

31

Generate FIRRTL
Perform

Sanity Checks

Interpret
intermodular

relations

Insert simple
data type

conversion logic

Insert complex data
type conversion

modules

Update intermodular
relation data

Analyze
producer/consumer/
stakeholder relations

Synthesize and
generate control logic

Twine Elaboration

Original Chisel Elaboration

Content

• Motivation

• Twine Features

• Implementation & Circuit Generation

• Experiments & Results

• Productivity Improvement Experiment

• Design Quality Experiment

• Limitations & Future work

• Conclusion

35

Experiment: Productivity Improvement

• Prototyped a database query accelerator similar to Q100 (ASPLOS ‘14)
• Conducted design space exploration in Verilog, Chisel, and Twine

36

Design Translator

Hardware

SELECT id, sales1+sales2, unit
FROM table
WHERE unit != 0
GROUPBY id

SQL Query Hardware
Components &
Filters

Experiment: Productivity Improvement

37

• Much fewer lines of code (~1/3 of
the designs in Chisel)

• Number of lines changed between
designs is low

Mostly New Components Creation

No change between different
degree of vectorization

Experiment: Design Quality

• Reproduced RISCV-MINI, a three-stage RISCV core in Twine
• Components interfaced with DecoupledIOCtrl

38

RISCV-MINI: https://github.com/ucb-bar/riscv-mini

Area* Clock Period*

Chisel 727004.94 0.85 ns

Twine 725937.90 0.82 ns

Change -0.14% -3.5%

*Based on IBM 45nm CMOS Process

Content

• Motivation

• Twine Features

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

41

Limitations

40

• Inflexible processing granularity for vectorized modules

• Missed opportunities in inter-module optimizations

• Possible out-of-order execution or forwarding across the

module boundary

Future Research Directions

• Better verification and debugging capabilities for Twine

• Utilize the producer/consumer relations to speed up verification process

• Flexible & customizable interface protocol framework

• User-defined interfaces and elaboration process

44

Content

• Motivation

• Twine Features

• Implementation & Circuit Generation

• Experiments & Results

• Limitations & Future work

• Conclusion

45

Conclusion

• Twine is a Chisel extension that supports
• reusable standard component control interfaces
• high-level operator for composability
• control coordination & data type conversion automation

• Twine boosts developer productivity for heterogeneous designs.
• 1/3 of lines of codes compared to Chisel

• Twine provides similar design quality comparing to Chisel.

• Visit https://github.com/Twine-Umich/Twine to download Twine.

46

https://github.com/Twine-Umich/Twine

Q & A

Twine is an open-source project.
To download Twine, please visit https://github.com/Twine-Umich/Twine

All feedbacks are welcomed!

47

https://github.com/Twine-Umich/Twine

	 �Twine: A Chisel Extension for Component-Level�Heterogeneous Design
	The Death of Homogeneous Designs
	The Death of Homogeneous Designs
	The Era of Heterogeneous Designs
	Meeting Distinct Requirements
	Meeting Distinct Requirements
	The Zen of Heterogeneous Design
	The Zen of Heterogeneous Design
	Our Solution: Twine
	Content
	Content
	Twine Standard Control Interfaces
	Twine Standard Control Interfaces
	Content
	High-level Operator for Composability
	Content
	Automate Control Coordination & �Data Type Conversion
	Automate Control Coordination & �Data Type Conversion
	Automate Data Type Conversion
	Put Them Together
	Content
	Build Upon Existing Infrastructure & Preserve All Features
	Twine Elaboration Pipeline
	Content
	Experiment: Productivity Improvement
	Experiment: Productivity Improvement
	Experiment: Design Quality
	Content
	Limitations
	Future Research Directions
	Content
	Conclusion
	Q & A

