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The Death of Homogeneous Designs
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CPU Performance Scaling is Dead.

Cost of Design is Exploding.

Homogeneous Designs are No Longer Cost-Effective



The Era of Heterogeneous Designs
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Increasing Amount of Hardware Designed, 
Customized, and Tailored for Specific Applications.

Customized SoC Application-specific Hardware



Meeting Distinct Requirements
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Various Algorithms Diverse Settings Different Technologies

Distinct Performance, Area, Power, and Cost Requirements

Different Designs, Topologies, Functionalities



Meeting Distinct Requirements

4

Various Algorithms Diverse Settings Different Technologies

Distinct Performance, Area, Power, and Cost Requirements

Different Designs, Topologies, Functionalities

How Do Developers Create New Designs?



The Zen of Heterogeneous Design
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Existing 
Components

Existing System

New 
Components

New System

- Add New Stage
- Add New Functionalities
- Target New Application

- Use Component Libraries
- Reuse Components in Other 

Designs

- Vectorize Functional Units
- Pipeline Operations
- Change Data Format

- Replicate Functional Units
- Widen Memory Bandwidth
- Add Additional Layers

Scale

Reuse Customize

Reconfigure



The Zen of Heterogeneous Design

5

Existing 
Components

Existing System

New 
Components

New System

- Add New Stage
- Add New Functionalities

- Use Component Libraries
- Reuse Components in Other 

Designs

- Vectorize Functional Units
- Pipeline Operations
- Change Data Format

- Replicate Functional Units
- Widen Memory Bandwidth

Scale

Reuse Customize

Reconfigure

Modern Hardware Design Languages Should Help 
Developers Efficiently Complete These Jobs



Our Solution: Twine

Twine is a Chisel extension for 
component-level heterogeneous designs.

Twine supports essential features for heterogeneous design:
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Standardize Control Interfaces (reusability, scalability)
High-level Operator for Composability (scalability, reconfigurability, 
customizability)
Automate Control Coordination & Data Type Conversion (scalability, 
reconfigurability)
Low Level Access to Chisel Primitives (reconfigurability, customizability)
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Twine Standard Control Interfaces

• Interfaces define how a component communicates.
• Standardizing interfaces is a common practice.

• Many standard interfaces for coarse-grained components (e.g., AXI, PCIe).
• Too heavy for intra-accelerator communication.

• Naive approach: without standard control interfaces
• Inspect, examine, and adapt component interfaces every time.
• Automation is not straightforward, requiring significant designer effort and debugging

• Better approach: standard control interfaces
• Make component behaviors more predictable.
• Enable high-level automation.
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Twine Standard Control Interfaces

• Declaration of a Twine Module Interface

• Four Standard Control Interfaces in Twine

• TightlyCoupledIOCtrl

• ValidIOCtrl

• DecoupledIOCtrl

• OutOfOrderIOCtrl
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val in = IO(new ModuleInputType) // All data in-flow ports
val out = IO(new ModuleOutputType) // All data out-flow ports
val ctrl = IO(new ModuleCtrlType) // One of four standard control Interfaces

High

Flexibility

Low

High

Low

Complexity
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High-level Operator for Composability

• New flow operator >>> to distinguish from the original Chisel wire 
connection

• Producer >>> Consumer
• Supports all levels of granularity 
• moduleA >>> moduleB, wireA >>> wireB, Bundle(wireA, wireB) >>> moduleA

• Focus on producer/consumer relations 
• Producer: module that outputs completed values
• Consumer: module that takes values as inputs (or needs to know when a value has 

been taken)

• Automatically inferred from the dataflow of the design
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Automate Control Coordination & 
Data Type Conversion

• Automatically generate system-level control logic
• Inferred based on dataflow and producer/consumer relations
• Mix-and-match across different interfaces
• Ability to manually control preserved
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Automate Control Coordination & 
Data Type Conversion

• Automatically generate system-level control logic
• Inferred based on dataflow and producer/consumer relations
• Mix-and-match across different interfaces
• Ability to manually control preserved

• Data Type Conversion
• Auto conversion between different data types (e.g., floating points <-> integers)
• Auto conversion between different port width (useful for vectorized components)
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Automate Data Type Conversion

• Simple conversion logic is combinational and transparent
• e.g., Unsigned Integers <-> Signed Integers, Bitwidth expansion

• Complex conversion logic serves as a full converter module
• Floating point to integer conversion
• Serializer and de-serializer for vectorized components
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Put Them Together
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Assume there are modules A, B, C, and D. Module C is a vector module. 

A

B

C

D

Implement one of four control interfaces 
- Predictable
- Enable high-level automation 

 More Reusable

Chisel Compatible

High Level Specification

in  >>> A
A >>> B >>> D.1
A >>> C >>> D.2
D >>> out

Design Automation
- Control Coordination
- Data Type Conversion

in out
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Build Upon Existing Infrastructure & Preserve All 
Features
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Chisel Syntax, 
Semantics, and 

Primitives

Chisel Utils (Pipe, etc.)

Twine Syntax, 
Semantics, Types, 

and Primitives

Twine Utils

Overloaded
Operators



Twine Elaboration Pipeline
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Generate FIRRTL
Perform 

Sanity Checks

Interpret 
intermodular 

relations

Insert simple 
data type 

conversion logic

Insert complex data 
type conversion 

modules

Update intermodular 
relation data

Analyze 
producer/consumer/
stakeholder relations

Synthesize and 
generate control logic

Twine Elaboration

Original Chisel Elaboration
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Experiment: Productivity Improvement

• Prototyped a database query accelerator similar to Q100 (ASPLOS ‘14)
• Conducted design space exploration in Verilog, Chisel, and Twine
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Design Translator

Hardware

SELECT id, sales1+sales2, unit 
FROM table 
WHERE unit != 0 
GROUPBY id

SQL Query Hardware 
Components & 
Filters



Experiment: Productivity Improvement
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• Much fewer lines of code (~1/3 of 
the designs in Chisel)

• Number of lines changed between 
designs is low

Mostly New Components Creation

No change between different 
degree of vectorization



Experiment: Design Quality

• Reproduced RISCV-MINI, a three-stage RISCV core in Twine
• Components interfaced with DecoupledIOCtrl

38

RISCV-MINI: https://github.com/ucb-bar/riscv-mini

Area* Clock Period*

Chisel 727004.94 0.85 ns

Twine 725937.90 0.82 ns

Change -0.14% -3.5%

*Based on IBM 45nm CMOS Process
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Limitations
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• Inflexible processing granularity for vectorized modules

• Missed opportunities in inter-module optimizations

• Possible out-of-order execution or forwarding across the 

module boundary



Future Research Directions

• Better verification and debugging capabilities for Twine 

• Utilize the producer/consumer relations to speed up verification process

• Flexible & customizable interface protocol framework

• User-defined interfaces and elaboration process
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Conclusion

• Twine is a Chisel extension that supports 
• reusable standard component control interfaces
• high-level operator for composability
• control coordination & data type conversion automation

• Twine boosts developer productivity for heterogeneous designs.
• 1/3 of lines of codes compared to Chisel

• Twine provides similar design quality comparing to Chisel.

• Visit https://github.com/Twine-Umich/Twine to download Twine.
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https://github.com/Twine-Umich/Twine


Q & A

Twine is an open-source project.
To download Twine, please visit https://github.com/Twine-Umich/Twine

All feedbacks are welcomed!
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https://github.com/Twine-Umich/Twine
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