
ThundaTag: Disparate Domain Tagging
to Enforce Benign Program Behavior

By Shibo Chen and Alex Kisil

Many attacks rely on the ability of forging pointers
Solutions: Rule-based Systems, Finer-grained encryption, Memory Space
Randomization etc.

Motivation

https://www.tenouk.com/Bufferoverflowc/Bufferoverflow4.html
https://patentimages.storage.googleapis.com/e7/9b/6e/245e7ec8fff374/US7752459.pdf

https://www.tenouk.com/Bufferoverflowc/Bufferoverflow4.html

• Architectural support to impose strict checks and propagation rules on
instructions, i.e. the program should only jump on code pointers, and
not data pointers or data

Methodology

• Disparate Domains
• 6 domains: code, data, code pointer, data pointer, return, null (4 bits for

easy alignment)

Methodology Ctnd.

Null

Return
Data
Ptrs

DataCode

Code
Ptrs

Rules for Control Flow and Arithmetic Operations

● Only code can be executed.

● Can only jump/branch on code pointers.

● Can only return on return type.

● Return can only be returned. Any other operation is an exception.

● NULL can not be accessed under any circumstances.

Propagations Rules in ALU and Memory

How do we generate tags?

We can use LLVM to statically analyze the codes, determine data types and
generate tags for each 32/64 bit.

Out of scope for this project

Extend register files

Tag determination in ALU

Tagging in writeback and forwarding logic

Tagging in memory hierarchy

Raise exception when rules violated

New instructions for debugging and flexibility

Architectural Design

Before operation
occurs, tags of
operands are checked
for legality. If an illegal
combination is
detected, an
exception is thrown.
Tag of dest reg is now
determined.

Dest reg value and its
new tag are written
back to the register
file.

Instruction
fetched from
mem. Tag is
verified as code
as it is placed in
icache.

ADD rd,rs1,rs2

Instruction is
decoded into
opcode, source,
and dest regs.

Regs, along with their
tags are passed from
the extended regfile to
execute stage

EECS 370 Lecture Slides
https://drive.google.com/file/d/1bfXswKN0vEs0_IO2oA4ReXoCqL3iX3nS/view

DRAM: Tags are stored in a space in DRAM that is non-addressable by
software. In this partition, tags are stored one after the other. This means
a typical DRAM block of 64B can store 128 tags (at 4-bit tags).

Tag Cache: When reading from the DRAM, we also issue a request to fetch
the corresponding tags for that block. Since reading that tag block will also
contain tags irrelevant to the first DRAM request, we cache the extraneous
tags in case spatial locality is realized in subsequent accesses.
When write back to the DRAM, both data and tags will be written back.

Memory Hierarchy Tag Propagation

DCache

DRAM

Tag CacheMiss MissHit
Hit

DCache

DRAM

Tag Cache
Write
back

Write
back

• Rocket Core
• Open-source: Allows us to make add-ons without having to reinvent the

base architecture
• Simple: 5-stage pipeline makes debugging and analysis simpler
• Parameterized: Chisel allows us to easily change hardware module

configuration to meet our needs

Technical Details

https://www.lowrisc.org/docs/tagged-memory-v0.1/rocket-core/

New Instructions

SETTAG $r1, CP Tag_Reg[1] = CP

CMPTAG $1, CP If(Tag_Reg[1] != CP) Raise Exception

Requirements:
1. No collision with other instructions.
2. Fit in 5 stage pipeline.
3. Handle hazards and bypass.

Trick:
Format and decode the instruction similar to ADD $1, $0, $1.
Then the original rocket pipeline will handle bypass logic for us.

Gem5 Simulation

Analysis: Performance

8 kB icache

32 kB dcache

2 kB tag cache

1 GHz

No L2 cache

64 bit in order core

3% Performance Overhead on Average

• Synthesis Configuration

Analysis: Area

4 kB icache

16 kB dcache

2 kB tag cache

No floating point unit

32 bit 5 stage in order pipeline

• Resulting in ~0.35% area overhead

Discussion & Limitations

Discussion:
● Using larger tag cache or multi-layer cache hierarchy will likely

decrease tag miss rate and thus performance overhead.
● More fine-grained rules and domain categories will lead to higher

security and less false positives.

Limitations:
● Didn’t fully verify the design and implementation.
● Area evaluation is not on a full implementation, so the area overhead

will only go up.

Conclusions

● We implemented architectural support to include tag propagation and
rule checking in the rocket core pipeline.

● We added new instructions for the debugging purpose and also gives
programmers more flexibility.

● We evaluated the full-scale system by simulation and synthesis. The
results show that such design has low performance and area overhead.

Q&A

