UNIVERSITY OF
MICHIGAN

ThundaTag: Disparate Domain Tagging

to Enforce Benign Program Behavior
By Shibo Chen and Alex Kisil

Motivation

Many attacks rely on the ability of forging pointers
Solutions: Rule-based Systems, Finer-grained encryption, Memory Space
Randomization etc.

Higher memory address

Stack frame

for main|()
Functions' arguments CPU
- 1. Access aftacker s data referenced
by corrupied pointer
| 1. Fetch Pointer Vale \y i
1
1 \
1 \
1 - —— -
: Corruptid Pointer Data Malicious
! Memory oA Data
; malicious/attack x40
! codes 0x1234 0x1340
1
1
1

| I ——

Lower memory address

https://www.tenouk.com/Bufferoverflowc/Bufferoverflow4.html

https://patentimages.storage.googleapis.com/e7/9b/6e/245e7ec8fff374/US7752459.pdf

https://www.tenouk.com/Bufferoverflowc/Bufferoverflow4.html

Methodology

* Architectural support to impose strict checks and propagation rules on
instructions, i.e. the program should only jump on code pointers, and
not data pointers or data

Tags Program Memory
A A

Tag_Granularity =
System bit-width (32/64)

log,(# Domains)

|
Tag Width = l
|

*Every Tag_Granularity-

Word has a Tag_Width-bit ‘e Y
tag associated with it* Tag_Width Tag_Granularity bits wide
bits wide

Methodology Ctnd.

* Disparate Domains
* 6 domains: code, data, code pointer, data pointer, return, null (4 bits for
easy alignment)

Code Data
Ptrs Ptrs

Rules for Control Flow and Arithmetic Operations

e Only code can be executed.

e Can only jump/branch on code pointers.

e Can only return on return type.

e Return can only be returned. Any other operation is an exception.

e NULL can not be accessed under any circumstances.

Propagations Rules in ALU and Memory

B|A| D |orP| Cc [cP

o|Oo|0|0

o|Oo|0|0

O|O|0|0

o|o|0o|0C

b} n D m |m
DP i | DP | M | I
c oo o o

Store (overriden)

DEST: MEM[RS1 + offset]

o|Oo|0|0

o|o|0|0

O|O0|0|0

o|o|0o|0

CP i CP [I 1t

MNon-Store ops (overriden)

Load (B = MEM[RS1+offset])

B(A| D |DP| C | CP
D n D n "
DP in | pP | M n
C " mn " mn
CP m | cp | m mn

Store

DEST: MEM[RS1 + offset]

B|A|(D [DP| C | CP
D D | DP | It !
DP | DP ! i !
c mepoumr o opom
CP ! ! i !

Reg-Reg Arith (ADD only)
DEST: RD

DEST: RD
B|A|(D [DP| C | CP
D D |DP | It !
DP | DP | D i !
C mepoum o o[om
CP ! ! i !

DEST: RD
B|/A|(D [DP| C | CP
- D |DP | M1 |CP
= D (DP | M | CP
- D [DP [M | CP
- D [DP [M | CP

Reg-Reg Arith (SUB only)

DEST: RD

Immed Arith
DEST: RD

B|/A|l D [DP| C | CP
D ! ! n !
DP ! ! n !
(o} o fowmofom
CP ! ! i !

Any Arith (Overflow)
DEST: RD

How do we generate tags?

We can use LLVM to statically analyze the codes, determine data types and
generate tags for each 32/64 bit.

Out of scope for this project

Architectural Design

Extend register files

Tag determination in ALU

Tagging in writeback and forwarding logic
Tagging in memory hierarchy

Raise exception when rules violated

New instructions for debugging and flexibility

ADD rd,rs1,rs2
1 +
= N
wo| 0
/ ek Rllﬁl
regB k2] 7 — e -
PC Inst | .,__g_ o B3 21 1 e U
mem Bl_rﬂ % r4| 11 111 — X
\ 2 7 |‘ Data [\
l__ | LRnury
| B
I
3
g4l ‘l
SW noop|
) Y QJtle tO =
d -.-3 --'-.:.,0 H@
_?_xé%f (?1 |ts thrown. IF/ ID/ EX/ Mem/,
ag of dest reg is now _
determined. ID EX S WB

EECS 370 Lecture Slides

https://drive.google.com/file/d/1bfXswKNOVEsO_I020A4ReXoCqL3iX3nS/view

Memory Hierarchy Tag Propagation

DRAM: Tags are stored in a space in DRAM that is non-addressable by
software. In this partition, tags are stored one after the other. This means
a typical DRAM block of 64B can store 128 tags (at 4-bit tags).

Tag Cache: When reading from the DRAM, we also issue a request to fetch
the corresponding tags for that block. Since reading that tag block will also
contain tags irrelevant to the first DRAM request, we cache the extraneous
tags in case spatial locality is realized in subsequent accesses.

When write back to the DRAM, both data and tags will be written back.

Technical Details

* Rocket Core
* Open-source: Allows us to make add-ons without having to reinvent the
base architecture
* Simple: 5-stage pipeline makes debugging and analysis simpler
e Parameterized: Chisel allows us to easily change hardware module
configuration to meet our needs

PC IF ID EX MEM WB
PC [(TTCE] [0ot RE] [[[DTCE] [T T RoCC
Gen D 1$ D Inst Int.EX D$ Commi > Accelerator
- Access Decode | |al lal |Access | |a]
FP.RF FP.EX1 FP.EX2 D FP.EX3
al al al

https://www.lowrisc.org/docs/tagged-memory-v0.1/rocket-core/

New Instructions

SETTAG $r1, CP Tag_Reg[1] = CP

CMPTAG $1, CP If(Tag_Reg[1] '= CP) Raise Exception

Requirements:
1. No collision with other instructions.

2. Fitin 5 stage pipeline.
3. Handle hazards and bypass.
Trick:

Format and decode the instruction similar to ADD $1, $0, $1.
Then the original rocket pipeline will handle bypass logic for us.

Analysis: Performance

Gem5 Simulation

8 kB icache

32 kB dcache

2 kB tag cache

1 GHz

No L2 cache

64 bit in order core

Performance Evaluation
7E+09

6E+09 |

SE+09

4E+09 : _

3E+09 _ [l

2E+09 {% E ri r? [T

1E+09 PR IT | I ——] I I| H

“WIMEH NHwT e

& o N &
< o0 |

<) < RS & o N)
o5 & & & & & & & & &
o Q’ o ; O & &2 < Q Q' N
N [N N & A o QN ™ R
e Ne) o N oy . n,:
ol s \e) R Nt %
Ny Qv
v ,‘\‘\'_}
Emm Baseline (Cycles) mmmmTagged (Cycles) Overhead

3% Performance Overhead on Average

&

v o, ~
B W e e

R R R R 3

N oW
R R R R

Qe

Analysis: Area

e Synthesis Configuration

4 kB icache

16 kB dcache

2 kB tag cache

No floating point unit

32 bit 5 stage in order pipeline

* Resulting in ~0.35% area overhead

Discussion & Limitations

Discussion:
e Using larger tag cache or multi-layer cache hierarchy will likely
decrease tag miss rate and thus performance overhead.
e More fine-grained rules and domain categories will lead to higher
security and less false positives.

Limitations:
e Didn'’t fully verify the design and implementation.
e Area evaluation is not on a full implementation, so the area overhead
will only go up.

Conclusions

e We implemented architectural support to include tag propagation and
rule checking in the rocket core pipeline.

e \We added new instructions for the debugging purpose and also gives
programmers more flexibility.

e \We evaluated the full-scale system by simulation and synthesis. The
results show that such design has low performance and area overhead.

Q&A

