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Abstract 

Many attacks rely on the ability to forge pointers and overwrite architecturally 
sensitive addresses to gain unwarranted control in originally benign but vulnerable 
programs. For example, the buffer overflow attack, an attack that overwrites the return 
address of a function call to inject malicious code, is extremely common as a 
component of current deadly attacks. Current solutions only serve as minor deterrences 
to these attacks as they become more sophisticated. This work proposes a method of 
preventing the overwriting of sensitive pointers and addresses to stop control flow 
attacks through a rule-based system. While enforcing the benign behaviors of the 
program, our design only induces 3% performance overhead and 0.3% area overhead. 
 
Introduction 

Solutions to control flow attacks often take an approach of making the sensitive 
addresses harder to find. For example, Address Space Layout Randomization​[1] 
originally defeated buffer overflow attacks by randomizing address bits, but was 
eventually thwarted as the attack was updated. Instead of making sensitive addresses 
harder to find, ThundaTag instead asks the question of why the user is able to overwrite 
such sensitive data in the first place. If the system can raise an exception when the 
malicious user tries to overwrite the return address of a call with their own custom 
pointer or immediate, the buffer overflow could simply be stopped at its core. 
ThundaTag sets out to prevent the overwriting of such addresses through the 
enforcement of a rigid and comprehensive ruleset based on disparate domain tagging of 
data as it propagates through the architecture.  

In this work, we categorize values into 6 types, each of which has specific rules 
to follow in terms of what operations the user program can do on them and how to 
propagate under arithmetic operations. It then outlines the evaluated performance 
overhead and area overhead by simulation and synthesis. 

 
Methodology 

In order to impose strict rules upon the propagation of instructions through the 
architecture, there must be a way of distinguishing different types of data. A system of 
disparate domain tagging was introduced as the fundamental core of ThundaTag. As 
the data is brought into the pipeline, it would be assigned one of 6 proposed tags: data, 
code, data pointer, code pointer, return address, and null. Data is the most basic type, 
in that it does not have the privilege of being returned or jumped on. Data pointers can 
be used to access memory, unlike data. Code pointers are the only type that can be 
stored in the icache and executed. They are also the only type that can be 
jumped/branched on (excluding returns). While conceptually, there is some overlap 
between these types, return addresses must be differentiated from code pointers as 
they should be held to certain restrictions that code pointers aren’t, i.e. return pointers 



should never be written to, only returned on. Finally, the null type refers to any 
“untagged” data, such as memory that hasn’t been used yet or dynamic memory that 
was previously freed. This type cannot be legally touched without exception. 
 
Technical Details 

The implementation of ThundaTag’s designed was realized through additions to 
the Rocket Core in-order 5-stage pipeline. At a high level, tag checking logic was added 
to the ALU, and storage was allocated within the register file to accommodate the tag 
bits. Writeback and forwarding processes were also extended to work with tagging. 4 
bits were used for each tag to allow easy alignment as well as to allow for finer grained 
tagging in future work. 

ALU: ​Logic was added to the ALU module to assert the legality of operations as well as 
determine the tag of the operation’s result. For example, the resulting tag of adding data and a 
data pointer should be a data pointer. A full chart of the ALU tagging logic is provided below. 
“!!!” indicates that an exception is thrown, whereas “!” indicates potentially suspicious 
behavior, and it is left up to the architect to decide how to respond. 

 
Register File: ​To accommodate the space needed for tags in the register file, a duplicate 

register file was implemented solely to store tags. This register file has 4 bit cache lines so that 
any movement within it can mimic that of the original register file, i.e. if register 7 is 
overwritten in the register file, tag 7 is overwritten in the tag file. 

Forwarding and Writeback: ​Forwarding and writeback perfectly mirror forwarding and 
writeback for the data that the tags correspond to. This way, tags follow their respective data 
through the pipeline. 

New Instructions: ​ Two new instructions were added to the decode table in the decode 
phase to allow for the manual tagging and verification of data. MOVTAG casts the tag of the 
data in a register file to a given parameter, and CMPTAG compares the tags of two source 
registers.  

Memory Access: ​In order to keep track of the tag of different values, we need to fetch 
tag into the pipeline along with the data associated with it. For this, we added a tag cache in the 
memory hierarchy. For every load operation, the system needs to bring data value from dcache 
and tag from the tag cache. If there is a miss in either one of the two caches, the system needs 
to wait until both values have been brought into the cache. For every store, the pipeline needs 



to make a store to tag cache at the same time. For any cache line that needs to be written back 
to the DRAM, the associated tag also needs to be written back from the tag cache. 
 
Evaluation 

We did evaluations on performance and area. We used gem5 to simulate 
performance. We then implemented a prototype based on the Rocket Core. Although it 
is not fully functional yet, we are still able to synthesize it and estimate the area 
overhead our design has.  

Performance Overhead:​ ​We used gem5​[3]​ to simulate the execution of our design. While 
there isn’t any performance overhead introduced in the pipeline execution, the performance 
overhead is induced by the increasing number of memory access, either read or write, to the 
DRAM. In our simulation, we add one more memory access latency if there is a miss in the tag 
cache or the program is trying to write a piece of data back to the memory. In the performance 
simulation, we used an in-order core running a 1GHz and we configured the underlying 
hardware to have 8 kB L1 instruction cache, 32 kB L1 data cache and 2 kB tag cache. There is no 
L2 cache in our design.  We run a set of SPEC06 benchmarks and the average performance 
overhead is 3%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Area Overhead: ​We successfully implemented underlying logic in the Rocket Core 

pipeline. We used a 32-bit in-order core with 4 kB instruction cache, 16kB data cache, and no 
floating pointer unit. Although we have not successfully implemented logic in the caches, we 
put a 2 kB data array in data as the placeholder in order to get an estimation of the area 
overhead. After the synthesis, the area overhead is only 0.35%. 

 
Discussion/Limitations 

Due to difficulty in understanding the memory hierarchy and its interfaces within 
the implementation of the Rocket Core, we decided to keep tags out of the memory 
system for time’s sake. Instead, we synthesized the project with a 2 kB larger dcache to 
stand in for the extension necessary for tags so that we could still get an accurate area 
estimate. While propagation of tags throughout the memory hierarchy is left up to future 



work, it is expected to have a beneficial impact on performance (as tags will reap the 
benefits of having a cache) but at a small detriment to area overhead. Also, a region of 
DRAM would be partitioned for the sole storage of tags, with a mathematical function 
used to calculate a datum’s tag’s location for load and store operations.  

While we used a relatively small tag cache in our evaluation, the performance is 
already as low as 3%. Since the performance overhead is induced by making more 
memory access due to misses in tag cache, the performance can be improved if using a 
bigger cache or even multi-layer cache hierarchy. 

Although any other utilization of the tag is out of scope for this research project, 
we would like to point out that it is also helpful in domain encryption and address space 
randomization. 
 
Group Dynamic 

The team consisted of two members of the same research lab. Because of this, 
we found it relatively easy to meet and discuss high-level concepts, as well as technical 
details in person. This was essential to our understanding of the codebase of the 
Rocket Core, as there is very little documentation for the project. We also kept a running 
shared document of any new information we learned or new questions that we had.  

We utilized our physical lab space on the 2nd floor of the BBB as a meeting and 
workspace. In addition to our informal meetings, we also had a weekly meeting where 
we would present our ideas and progress to Dr. Austin and Misiker. 
 
Conclusion 

The attacker often exploits vulnerabilities by fudging data types to hijack control 
flow, i.e. stack overflow attack to overwrite the return address. In this project, we 
categorize data into different domains and set up specific rules on different domains to 
enforce the benign behaviors of the program.  We implemented ThundaTag 
architectural support to power it. The design proves to have low performance overhead 
and area overhead.  
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