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PREFACE

This thesis represents not only the culmination of years of academic research but also a deeply
personal journey toward realizing a lifelong aspiration. Pursuing a doctoral degree has been a
longstanding ambition of mine, and completing this thesis fulfills that dream.

My research journey began in computer security, but gradually, my interests shifted toward
computer architecture, greatly inspired by the pioneering work of my advisor, Professor Todd
Austin. Over time, I discovered the immense potential that working at the architectural level offers,
particularly the ability to approach complex problems from diverse perspectives. My transition
into this field was sparked by an early, challenging experience collaborating with my friend and
peer, Alex Kisil, on a course project. We sought to integrate a new security feature into a widely
used open-source CPU design implemented in Chisel. However, we quickly realized the existing
codebase was exceptionally difficult to comprehend, let alone modify. Driven by this frustration
and informed by our combined experience with Chisel and SystemVerilog, I developed Twine
(Chapter 3), a tool designed specifically to simplify the generation of heterogeneous hardware
designs.

As my research advanced, I encountered further challenges in efficiently integrating heteroge-
neous components, prompting the development of novel architectural solutions. Zipper (Chapter 4)
was created to address the communication overhead between host systems and coprocessors–—a
problem I confronted directly while contributing to the Sequestered Encryption project, led by my
then-labmate Lauren Biernacki. Later, during an internship at Tenstorrent, my work on MPSoC
interconnects highlighted issues related to resource contention and interference among compute
hosts. These observations informed the development of Overpass (Chapter 5), an innovative de-
sign that aims to enhance resource sharing and efficiency.

Throughout my PhD, my work has consistently emphasized the creation of tools, architectures,
and engineering principles that facilitate high-performance, high-quality hardware design without
compromising flexibility and ease of use. As computer systems continue to evolve into more het-
erogeneous and complex architectures, ensuring their accessibility becomes increasingly critical,
particularly given that human cognitive abilities are not advancing at a comparable pace. While AI
may eventually become instrumental in designing superior systems, this vision remains speculative
at the time of writing.
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It is my sincere hope that this thesis makes a significant contribution to the field of heteroge-
neous hardware design and computer architecture and that it inspires and guides future research
efforts.

Shibo Chen
Ann Arbor, Michigan, USA
April 2025
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ABSTRACT

With the stagnation of Moore’s Law and the breakdown of Dennard Scaling, hardware designers
are increasingly turning to heterogeneous architectures to achieve higher performance and energy
efficiency. Heterogeneous design composes complete systems from specialized, modular compo-
nents optimized for specific applications or markets. This modular approach contrasts with tra-
ditional homogeneous architectures, which use identical processors to handle diverse workloads.
By leveraging the unique strengths of each component, heterogeneous systems not only outper-
form their homogeneous counterparts but also enable faster time-to-market across a broad range
of use cases. Such specialization has been key to advances in low-power embedded systems and
data-intensive machine learning applications.

However, these benefits come at a cost. Heterogeneous systems incur greater non-recurring en-
gineering (NRE) effort, higher communication overhead, and increased memory bandwidth con-
tention—factors that limit scalability and adoption. A primary contributor is inefficient communi-
cation among heterogeneous components. Specifically, mismatched I/O interfaces hinder reusabil-
ity and drive up NRE; poor latency tolerance creates performance bottlenecks; and inadequate
resource allocation leads to contention and interference. These challenges arise at multiple stages
of system design and collectively slow or block deployment in real-world scenarios.

This dissertation presents minimally invasive solutions that streamline heterogeneous system
design by directly addressing these communication challenges. First, it introduces Twine, a de-
sign language for heterogeneous design that standardizes communication interfaces and automates
control logic generation. Twine reduces design specification size by 3×, enhancing reusability
and reducing engineering overhead. Second, it proposes Zipper, a set of latency-tolerant bus op-
timizations that enable systems to tolerate microsecond-level delays without drastic redesign. By
exploiting the temporal locality and parallelism that exist in applications, Zipper delivers up to 8×
performance gains. Finally, it introduces Overpass, a flexible interconnect system with distributed
resource allocation that optimizes bandwidth utilization. Overpass increases system performance
by 35%, enabling efficient communication across diverse components.

Together, Twine, Zipper, and Overpass complement each other, forming a cohesive framework
to help developers address the core communication bottlenecks of heterogeneous hardware at var-
ious design stages. These solutions help developers extract greater performance from their designs

xx



while conserving valuable engineering effort. By directly addressing the fundamental barriers to
adoption, this dissertation advances the practicality and effectiveness of heterogeneous system de-
sign and lays the groundwork for broader deployment and continued innovation in the field.
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CHAPTER 1

Introduction

Heterogeneous hardware architectures integrate diverse processing elements, such as CPUs, GPUs,
FPGAs, and specialized accelerators, into a unified system. This multi-faceted design allows each
component to execute the tasks it is best suited for, thereby enhancing overall performance, energy
efficiency, and responsiveness in handling diverse and demanding applications. This is in contrast
to traditional homogeneous architectures, where all applications are deployed to identical process-
ing components. Moreover, by permitting components to be produced separately and sourced from
different vendors, heterogeneous systems can be more cost-effective and flexible than their homo-
geneous counterparts, which typically rely on identical processing elements manufactured using a
single process node.

Despite their clear advantages, developing heterogeneous systems remains a formidable chal-
lenge. Manually generating design candidates for extensive design space exploration is both labori-
ous and inefficient. Furthermore, performance is frequently hampered by communication overhead
between diverse components and by resource contention. At the root of these issues lies inadequate
communication and a lack of effective coordination among heterogeneous elements.

To address these challenges, this dissertation investigates and enhances communication chan-
nels between heterogeneous components. It introduces a suite of tools and methodologies de-
signed to automate key design processes, reduce engineering overhead, and ultimately deliver
higher-performing hardware systems. Importantly, all solutions proposed require only minimal
modifications to existing hardware designs while incurring only a trivial area overhead.

In the rest of this section, we first explore the emerging trends that are driving the adoption of
heterogeneous architectures, providing a detailed account of the associated design challenges. We
then introduce the solutions developed in this work and outline the organization and key contribu-
tions of this dissertation.
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Figure 1.1: The manufacturing cost trend for various integrated circuits technologies and compo-
nents over the years by ES Jung [83]. The solid line depicts the recorded data from 2010 to 2015.
The dotted line is the projection of Moore’s Law.

1.1 The End of Moore’s Law and Dennard Scaling

Gordon Moore, co-founder of Intel, co-authored a seminal projection in 1965, later known as
Moore’s Law [111], which stated that the number of transistors within a given unit area on a
microchip would double every two years while manufacturing costs for the same unit area would
remain constant. His colleague, David House, refined this prediction by suggesting that transis-
tor counts would double approximately every 18 months—–a formulation widely regarded as the
practical speed of Moore’s Law [85].

In 1974, Robert Dennard introduced another critical observation, later termed Dennard Scal-
ing [45] or MOSFET Scaling, which posited that as transistors became smaller and their density
increased, the power consumption per unit area would remain constant. This principle was in-
strumental in driving the continuous advancement of increasingly complex microprocessors, as
engineers were able to integrate more transistors while achieving higher operating frequencies
without exceeding thermal constraints.

However, these trends have largely stagnated. Figure 1.2 shows that the power required per nm2

increases as the process node shrinks rather than staying constant as predicted by Dennard Scaling.
Figure 1.1 illustrates the deceleration and eventual breakdown of Moore’s Law: not only do the
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Figure 1.2: The power consumed per nm2 increases as the process node thrinks by Hennessy and
Patterson [61].

Figure 1.3: Transistors on Intel processors versus Moore’s Law by year by Hennessy and Patter-
son [61].
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Figure 1.4: The trend of microprocessor development collected and managed by K. Rupp, et
al. [135].

design rule sizes shrink slowly, but also, the cost per transistor decreases slowly and deviates from
the projection of Moore’s Law. The cost of logic transistors even goes up as the process node
shrinks. Figure 1.3 reinforces such a trend, showing that the number of transistors on their most
recent chips lags behind the projection of Moore’s Law.

The ripple of such stagnation has caused real disruption in commercial products. Rupp, et
al.[135] collected the data on microprocessor features and parameters of the past 50 years, illus-
trated in Figure 1.4. The stagnation of single-thread performance, processor frequency, and power
envelope is a direct victim of the breakdown of Moore’s Law and Dennard Scaling. Hennessy and
Patterson arrived at a similar conclusion with a similar trend shown in Figure 1.5.

At the time of writing, Taiwan Semiconductor Manufacturing Company (TSMC), the lead
foundry company with the most advanced manufacturing process, has not yet mass-produced its
next-generation 2nm process more than three years after introducing its 3nm process. Further-
more, the projected 2nm process will cost more than a 1.5x price increase for a mere 1.15x density
improvement [137].
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Figure 1.5: Growth of computer program using integer programs (SPECCPU) by Hennessy and
Patterson [61].

This slowdown has profound implications for the semiconductor design industry. Historically,
engineers could leverage process advancements to reduce power consumption while maintaining
existing designs or achieve higher performance by increasing design complexity without exceeding
thermal and die area constraints. However, these assumptions no longer hold. Designers now face
the challenge of downscaling their designs to meet power efficiency requirements for edge devices
while simultaneously producing larger, more power-intensive architectures to sustain performance
gains, both of which introduce significant power and yield challenges.

1.2 Increasingly Diverse Computing Needs

The rapid diversification of computing needs contrasts with the stagnation in high-performance
computing advancements. Over the past two decades, the computational requirements for training
machine learning models have quadrupled annually, as depicted in Figure 1.6. For instance, xAI
deploys over 200,000 GPUs to train its largest large language model, Grok 3 [63], which demands
more than 400 billion petaFLOPs. This exponential growth in demand underscores an urgent need
for increased computational power.

Conversely, developers are also pushing the boundaries on the low-power end of the spectrum.
Emerging ultra-low-power devices are being designed for applications ranging from human im-
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Figure 1.6: The compute needed to train a machine learning model over the years by domain[53].

plants to outdoor environments where external power is scarce [106, 78]. These devices must
operate efficiently, drawing only tens of microwatts—and even as little as picowatts when idle.

While performance and power remain the most frequently discussed metrics, other emerging de-
mands are also fueling innovations, necessitating novel architectures and designs. OpenTitan [119]
and Sequestered Encryption (SE)[23] are two architectures that emphasize security and privacy,
whereas Tenstorrent’s Tensix Neo architecture[152] targets reducing AI inference costs by exclu-
sively using commodity components.

Collectively, these developments demonstrate that a single, uniform architectural approach can
no longer adequately address the increasingly diverse and specialized computing demands of to-
day’s technological landscape, driving the inevitable shift toward heterogeneous architectures.

1.3 Emergence and Potential of Heterogeneous Hardware

“What we’re really trying to do is have heterogeneous systems

really become the foundation of our computing going forward.

And that’s the idea that you make every processor and every

accelerator a peer processor. ”

Lisa Su, CEO of Advanced Micro Devices, Inc., 2013

In response to the emerging diverse demands of computing, researchers and companies started
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to study and design heterogeneous architectures in the post-Moore’s Law and Dennard Scaling era.
Traditionally, hardware architectures have been homogeneous, deploying diverse workloads

onto identical cores built on the same microarchitecture. Developers scale these systems by repli-
cating the same components until they meet the performance targets. This approach simplifies
design and reduces engineering effort through extensive reuse. However, using powerful cores for
low-intensity tasks wastes power and resources. Furthermore, homogeneous systems are ultimately
limited by the serial portions of computation, a bottleneck that is worsened by the stagnation of
single-thread performance gains.

In contrast, heterogeneous architectures account for the diverse and evolving nature of compu-
tational demands. Rather than replicating identical processing units, they integrate a range of spe-
cialized components, each optimized for specific workload characteristics or market requirements.
This targeted approach enables the elimination of unnecessary general-purpose logic, resulting in
improved power and area efficiency relative to homogeneous systems. The resources saved can be
reallocated to increase the density of compute units on a single chip, thereby enhancing parallel
processing capabilities. Moreover, for latency-critical or serial workloads, heterogeneous systems
can incorporate dedicated circuits that execute tasks directly, avoiding the inefficiencies associated
with general-purpose instruction pipelines and reducing overall latency.

Heterogeneous designs primarily manifest in two forms:

• Reconfigurable Designs: These architectures can adapt to various market segments or com-
puting requirements by upscaling or downscaling. By adopting modular designs, developers
can quickly generate new designs during the architectural exploration phase and rapidly pro-
duce new Stock Keeping Unit (SKU)s. Additionally, by employing components like Field
Programmable Gate Arrays (FPGA)s, systems can be tailored post-manufacturing for spe-
cific tasks, offering flexibility and prolonged hardware relevance. A notable example is
Google’s Tensor Processing Unit (TPU), which is implemented using systolic array archi-
tecture. The TPU lineup includes high-performance cloud designs and smaller edge designs
downscaled for low-power devices such as smartphones.

• Hybrid Architectures: These systems combine different types of processors, such as
Central Processing Unit (CPU)s, GPUs, and specialized accelerators, to handle complex,
multitasking environments efficiently. By assigning workloads to the most suitable process-
ing units, these architectures enhance performance and energy efficiency. A notable in this
form is ARM big.Little [16] architecture, which pairs high-performance cores for demanding
tasks with power-efficient cores for background activities to optimize workload distribution.
Modern smartphone System-on-Chip (SoC) designs [15, 71] also exemplify this design phi-
losophy. Modern mobile SoCs integrate CPU, GPU, and Digital Signal Processing (DSP)s
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in a single package where CPU is responsible for control logic and sequential tasks, GPU is
responsible for image rendering, and DSPs are for processing audio and video related data.

In addition to the well-recognized advantages of enhanced performance and improved power ef-
ficiency resulting from division of labor, heterogeneous design offers the often-overlooked benefits
of reduced manufacturing costs and increased supply chain resilience. By allowing components
to be manufactured using the most cost-effective process nodes that meet design requirements,
companies can avoid the substantial expenses associated with premium fabrication technologies.

A prime example of this approach is AMD’s EPYC “Genoa” processors [12], which utilize
a chiplet-based architecture. In this design, the processor is segmented into Core Complex Die
(CCD)s and an Input Output Die (IOD). Each CCD is fabricated using TSMC’s 5nm process
technology, optimizing performance, while the IOD employs TSMC’s 7nm process, balancing
cost and functionality.

This strategic partitioning not only reduces manufacturing costs but also enhances supply chain
resilience. By decoupling the production of different components, manufacturers can more readily
adapt to supply chain disruptions. If certain components become unavailable, alternative solutions
can be sourced or produced using different process nodes without necessitating a complete re-
design. This flexibility allows for quicker responses to unforeseen challenges, thereby maintaining
production continuity and market competitiveness.

1.4 Zero to One: Building Heterogeneous Hardware from
Scratch

To successfully design and manage the development of a large system-level heterogeneous chip,
developers typically decompose the chip into smaller parts or subsystems. Figure 1.7 illustrates
how a heterogeneous chip is composed hierarchically: from low-level (module-level) components
to the final product—the chip itself. Notably, heterogeneity manifests at different levels of the
design hierarchy:

• Modules: Modules sit just above transistors and logic gates and serve as the minimal func-
tional building blocks of a design. To support heterogeneous architectures, modules must
be reconfigurable to meet varying requirements for timing, throughput, area, and power.
Common reconfigurable parameters include buffer sizes, pipeline depths, and vectorization
degrees. Designers also have access to a diverse library of modules, especially for arithmetic
operations with different data formats (e.g., integers, floating-point, brain floating-point [26],
etc.). Representative examples at this level include Arithmetic Logic Unit (ALU)s, Floating-
Point Unit (FPU)s, and simpler components like First-In, First-Out (FIFO) buffers.
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• Intellectual Property (IP)s: IPs are typically the smallest reusable or licensable design
units, composed of multiple modules and conforming to standard interfaces for integration.
Designing a high-quality IP involves selecting the optimal modules to fulfill functional re-
quirements and tuning their parameters to meet performance, cost, area, and power con-
straints. Examples include compute IPs such as CPU cores (with varying issue widths), AI
accelerators, and memory controllers.

• Dies/Chiplets: Dies or chiplets integrate multiple IPs through interconnects like crossbars
or more scalable solutions such as Network-on-Chip (NoC)s. A single die may contain a
diverse set of IPs or multiple instances of the same IP. Typically, compute dies are fabri-
cated using advanced process nodes to maximize performance and energy efficiency, while
memory and I/O dies are manufactured separately using more cost-effective technologies.

• Chips: With chiplets available, developers can mix and match them to build larger systems
using advanced packaging and interconnect techniques. For instance, NVIDIA’s Grace-
Hopper superchip [116] combines a CPU chiplet with a GPU chiplet, and its Blackwell
AI accelerator [117] integrates two GPU chiplets. Generally, a fully functional system-level
chip would include compute dies that shared I/O chiplets or memory controller chiplets for
best cost efficiency.

Hierarchical decomposition enables developers to balance the need for performance and flex-
ibility with the challenge of managing complexity. Transitioning between levels in the design
hierarchy involves hundreds of design decisions. Developers must also contend with the overhead
and intricacies of integrating heterogeneous components.

1.5 Challenges on the Road to Heterogeneity

While heterogeneous designs hold significant promise for addressing evolving computational de-
mands, designing and assembling a high-performance heterogeneous system presents considerable
challenges.

Figure 1.8 illustrates an example of a heterogeneous system architecture. This system includes
multiple compute dies interconnected to a shared pool of memory and I/O resources. Each compute
die integrates one or more compute agents, such as CPUs, GPUs, FPGAs, and other specialized
accelerators, designed to handle specific computational workloads efficiently.

The first key challenge, indicated by 1 , is generating comprehensive designs to explore the vast
design space and identify optimal configurations thoroughly. Modern designs typically involve
hundreds or even thousands of parameters or design options. The designs may also need to add or
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subtract one or more pipeline stages and functions to meet the unique demands. The combinatorial
explosion of design possibilities makes it exhaustively generate these designs. While reusable
and modular components offer promising improvements to mitigate the engineering overhead of
generating such designs, integrating these components into functional systems remains laborious,
reduces productivity, and thus incurs substantial engineering costs.

The second challenge arises after accelerator designs have been realized, marked as 2 in the
figure. To handle complex tasks efficiently, it often requires frequent inter-component communi-
cation between the hosts and accelerators. However, communication latency between CPUs and
accelerators is orders of magnitude greater than what can be tolerated by modern computing archi-
tectures and software techniques. This substantial latency overhead significantly hampers hetero-
geneous system performance and, in extreme cases, precludes the deployment of specific designs
altogether.

The third significant challenge emerges when integrating multiple compute agents that con-
currently access shared external resources, indicated by 3 . Resource contention in heterogeneous
systems negatively impacts overall system performance, leading to performance degradation. Con-
ventional resource allocation methods predominantly assume a homogeneous system environment,
rendering them inefficient when applied to heterogeneous contexts. A heterogeneous-aware, opti-
mized resource allocation strategy is crucial for realizing the full potential of new designs.

Chapters 3, 4, and 5 provide an in-depth discussion on the root causes of these challenges,
along with a detailed analysis of the shortcomings in current industry standards and state-of-the-
art approaches.

1.6 Streamlining Heterogeneous Hardware Design

”Good design is obvious. Great design is transparent.”

Joe Sparano, Instructional and Graphic Designer

This dissertation aims to streamline high-performance heterogeneous designs by addressing
each of the challenges described in §1.5. Collectively, this dissertation assists developers in con-
structing high-performance heterogeneous systems, ranging from Register Transfer Level (RTL)
modules and interconnected host-accelerator setups to intricate designs involving multiple agents
sharing resources. Each solution is described, studied, evaluated, and thoroughly discussed in
Chapters 3, 4, and 5, respectively.
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Design Principle. The solutions presented in this dissertation are designed to be straightfor-
ward to implement and transparent to both hardware components and application software.
Crucially, these solutions require minimal alterations to existing user designs, which reduces
the adoption barrier and minimizes friction between proposed approaches and current prac-
tices. Solutions developed under this principle possess the highest likelihood of adapting
seamlessly into the continuously evolving landscape of heterogeneous designs.

Chapter 3 explores the generation of RTL designs intended for design space exploration and
evaluation. It identifies that challenges in reusing modules arise primarily from fragmented design
assumptions, which cause discrepancies in the control interfaces of modules. Consequently, engi-
neers spend excessive time deciphering control logic and creating glue logic for various scenarios.
To mitigate these challenges, this dissertation proposes standardizing common control behaviors
into four unified interfaces, enabling fully automated integration of diverse modules without man-
ual intervention. We introduce Twine, a language embodying these insights, and demonstrate its
effectiveness. Our evaluations show that Twine significantly enhances productivity by reducing
code changes across designs. Early adopter experiments further confirm that Twine is intuitive,
easy to learn, and user-friendly.

Chapter 4 addresses the substantial communication overhead between hosts and accelerators.
Existing solutions typically involve hardware modifications or compiler adjustments to mask com-
munication latency, both of which entail significant engineering effort. This dissertation uncovers
previously untapped opportunities for exploiting locality and parallelism within applications with-
out requiring intrusive hardware or compiler modifications. We validate these findings through
two case studies and introduce Zipper—–a set of optimizations utilizing only software libraries
and drop-in hardware infrastructure. Zipper achieves up to an 8x performance enhancement while
requiring minimal engineering effort and hardware changes.

Chapter 5 investigates performance degradation caused by resource contention and the inher-
ent complexity of optimizing bandwidth allocation. We argue that the interconnect—–the central
component that connects all agents—–should be responsible for monitoring system performance
and optimally managing bandwidth distribution. To this end, we present Overpass, a flexible inter-
connect design that dynamically tracks bandwidth usage and agent performance metrics. Overpass
uses a distributed management mechanism that is adaptable to various network topologies, elimi-
nating the need for additional engineering steps. Evaluation on an eight-agent system demonstrates
that Overpass yields a 35% overall performance improvement.

Figure 1.9 offers a high-level overview of the heterogeneous system design landscape by map-
ping key design attributes, such as productivity, quality, and cost, against primary stages of the
hardware development process, from module generation to system-level integration. The green-
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Figure 1.9: The table shows various design attributes and design stages of heterogeneous systems.
Green cells mark the areas that are addressed in this dissertation; gray cells are out of the scope of
this dissertation.

highlighted cells indicate the areas directly addressed in this dissertation, reflecting a targeted effort
to improve design productivity at the module level (via Twine), reduce communication overhead
during IP integration (via Zipper), and optimize resource allocation among IP blocks or chiplets(via
Overpass). All three solutions are designed to be transparent to programmers, require minimal
changes to existing designs, and are portable across platforms—thereby enhancing productivity,
preserving high programmability, and reducing engineering and manufacturing costs.

Although Zipper and Overpass are each presented in the context of a specific design stage, both
address recurring challenges that span multiple phases of the design process. Their underlying
techniques are broadly applicable and require little to no adaptation when deployed across different
stages. Overall, the figure illustrates the complementary nature of Twine, Zipper, and Overpass,
each resolving a distinct bottleneck while collectively streamlining the end-to-end design flow.

A recurring insight throughout this dissertation is the observation that friction in heterogeneous
hardware design primarily arises from the loss of design information between compartmentalized
components and during integration phases. Defining clear interfaces and semantics to share or
reconstruct this information significantly enhances both design productivity and system quality.
Complexity in generating heterogeneous designs is substantially reduced by sharing standardized
control information among modular components. Communication latency is mitigated by capi-
talizing on shared locality and parallelism information between hosts and accelerators. Resource
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allocation is optimized by enabling components to communicate performance metrics within the
broader system. This dissertation identifies these information gaps and provides concrete solutions,
enabling smoother design and assembly processes tailored to unique user requirements.

General Applicability. Although the solutions in this dissertation are primarily motivated
by the challenges of heterogeneous hardware design, they are not restricted to heteroge-
neous systems. Twine, Zipper, and Overpass address fundamental design, communication,
and resource allocation bottlenecks that are also prevalent in large-scale homogeneous ar-
chitectures. For example, Twine’s modular interface abstractions improve design reuse and
integration across any complex system. Zipper’s latency-tolerant mechanisms are effective
in scenarios with host-device communication bottlenecks, regardless of component hetero-
geneity. Overpass’s decentralized bandwidth arbitration can enhance performance in homo-
geneous systems with shared interconnects and dynamic resource contention. As such, these
tools and methodologies offer value beyond heterogeneous contexts, making them broadly
applicable to modern system design.

Ultimately, the solutions presented herein help developers attain high performance with mini-
mal engineering overhead. The findings and detailed case studies provided in this dissertation lay
the groundwork and inspire future research and advancements in heterogeneous hardware design.

1.7 Dissertation Contributions and Organization

Through the following contributions, this dissertation provides innovative tools, techniques, and
architectural enhancements that significantly streamline the complex design process of high-
performance heterogeneous hardware. By addressing critical challenges in heterogeneous design,
the presented work reduces development complexity, automates essential design tasks, and unlocks
substantial performance improvements. Additionally, the dissertation shows that heterogeneous
systems require distinct design principles and novel solutions to harness their full performance
potential effectively.

The specific contributions of this dissertation include:

• Identifying and characterizing the complexity involved in coordinating control logic during
the design space exploration phase of heterogeneous hardware design.

• Analyzing and profiling latency-sensitive applications whose performance significantly de-
pends on effective communication between host processors and hardware accelerators.
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• Investigating deficiencies in existing communication resource allocation approaches that im-
pede performance in heterogeneous hardware systems.

• Proposing Twine HDL [33], a new design extension that standardizes control interfaces and
automates control logic generation through modular, reusable components. Twine acceler-
ates design space exploration, a crucial step in designing heterogeneous systems.

• Evaluating Twine against industry-standard design languages, demonstrating that automat-
ing control logic dramatically reduces engineering overhead and enhances developer pro-
ductivity.

• Identifying critical optimization opportunities that can exploit inherent application features
to improve data locality and parallelism within heterogeneous systems significantly.

• Introducing Zipper [34], a set of latency-tolerant optimizations targeting communication
buses to mitigate latency overhead without altering the underlying physical channel charac-
teristics.

• Demonstrating Zipper’s effectiveness through two comprehensive case studies, achieving
performance improvements of up to 8x with less than 5% additional area overhead, thereby
highlighting substantial opportunities for latency optimization based on application-specific
characteristics.

• Expanding the practical design space of heterogeneous systems through the optimizations
provided by Zipper, facilitating previously unattainable system setups and architecture de-
signs.

• Proposing Overpass, an advanced flexible interconnect architecture featuring distributed
bandwidth allocation and prefetch throttling mechanisms designed to optimize overall sys-
tem throughput.

• Validating Overpass through empirical evaluation in an eight-agent system configuration,
resulting in a 35% improvement in overall system performance.

• Providing insights into the decision-making processes within Overpass, offering founda-
tional guidance and inspiration for future research in heterogeneous system interconnect
design.

• Summarizing the limitations of this dissertation and presenting potential future directions of
heterogeneous system research.
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Dissertation Organization:
In Chapter 2, we provide the foundational background necessary for understanding the contri-

butions of this dissertation, covering essential tools, technologies, protocols, target architectures,
and relevant applications. This background sets the stage for the solutions presented in subsequent
chapters.

In Chapter 3, we introduce Twine [33], a design language developed to enable the rapid gen-
eration of heterogeneous hardware designs, thereby facilitating effective design space exploration.

Chapter 4 presents Zipper [34], a series of latency-tolerant optimizations for high-performance
buses. These optimizations are designed to significantly reduce communication overhead, enabling
more efficient integration of heterogeneous components.

In Chapter 5, we describe Overpass, a flexible interconnect solution developed to manage
resource allocation challenges within heterogeneous systems efficiently.

Chapter 6 compares the related works with the solutions presented in Chapters 3, 4, and 5 and
underpins the novelty and significance of the solutions proposed in this dissertation.

In Chapter 7, we present and discuss potential future directions to foster the further develop-
ment of heterogeneous designs.

Finally, Chapter 8 concludes this dissertation with a summary of contributions to the hetero-
geneous hardware design process and practice.
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CHAPTER 2

Background: Design Languages, Technologies,
Protocols, and Applications of Heterogeneous Design

This chapter serves as a practical guide to foundational concepts and tools in heterogeneous hard-
ware design and further motivates the importance of improving the heterogeneous design process.1

We first discuss the design languages and tools developers use to specify hardware designs. Next,
we provide an overview of technologies that enable heterogeneous designs, followed by an explo-
ration of the communication protocols and conventions used by heterogeneous components during
their design and deployment phases. Finally, we present selected applications studied or evaluated
throughout this dissertation.

2.1 Design Languages and Tools

To build any hardware system, the first step is to translate a functional idea into an actual design.
Developers use various design languages to translate functional specifications into designs that
can be synthesized into hardware. Some languages explicitly describe hardware cells, gates, and
wires, such as SystemVerilog [68]. Others rely on accompanying tools to interpret and convert
high-level descriptions into synthesizable designs, like Vivado HLS [162]. This section explains
the major language categories engineers rely on, their benefits, and where they fall short, especially
in heterogeneous contexts.

2.1.1 HDL

For decades, digital circuits have been designed using HDLs such as SystemVerilog [68] and
VHDL [67]. These languages allow engineers to define hardware at the RTL, explicitly captur-
ing concurrency and timing necessary for accurate simulation and synthesis, and remain widely

1Given the vast scope of the heterogeneous design landscape, this chapter focuses specifically on information
relevant to the dissertation’s core topics rather than exhaustively covering all existing works or technologies.
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used in industry. However, traditional HDLs offer limited abstraction, making code reuse chal-
lenging and resulting in verbose, repetitive code. Additionally, developers must manually manage
low-level details such as clock/reset handling, signal connections, and testbench separation. Code
reuse in HDLs is minimal. For complex or rapidly evolving designs, HDLs often become produc-
tivity bottlenecks.

2.1.2 HLS

HLS languages, such as VivadoHLS [162], provide designers with a more software-like devel-
opment environment. Instead of writing detailed RTL, engineers describe the intended hardware
behavior using high-level languages, typically C or C++. The HLS tools then generate correspond-
ing hardware logic, enabling designers to concentrate on algorithmic concerns while the tool han-
dles scheduling, parallelism, and resource allocation. Nevertheless, HLS-generated designs often
achieve lower performance compared to hand-optimized HDL implementations. HLSs also lack
sufficient expressiveness for certain hardware designs, limiting their applicability in performance-
critical systems.

2.1.3 DSL

DSLs, such as Halide [129] and Taco [88], offer specialized abstractions explicitly designed to
accelerate computationally intensive tasks. DSLs separate computational algorithms from opti-
mization strategies, allowing engineers to quickly generate hardware designs and explore differ-
ent performance trade-offs. However, the narrow scope of DSLs limits their applicability. Tasks
slightly outside their targeted domain often require complex workarounds or integration with other
tools. Furthermore, deploying DSL-generated designs within larger heterogeneous systems can
present significant challenges, particularly when combining multiple specialized DSLs or interfac-
ing with conventional RTL designs.

2.2 Communication Technologies that Enable Heterogeneity

Modern heterogeneous systems are more than just a collection of processing elements—they rely
on a new class of technologies that make component-level integration viable. In general, integrat-
ing heterogeneous components demands more sophisticated technologies compared to homoge-
neous systems, as inter-component communication and resource sharing become critical. Chiplets
provide a foundation for breaking down monolithic chips into modular components, and intercon-
nect technologies facilitate essential communication capabilities both within and between chips.
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Figure 2.1: A high-level diagram of a router node. Credit return is omitted in the figure. VC =
Virtual Channel. XBar = Crossbar.

2.2.1 Chiplets

Chiplets break large monolithic chips into smaller functional units that can be mixed and matched.
Chiplets are smaller dies that can be integrated on silicon interposer substrates [124] to form a large
chip. For instance, a CPU chiplet can be paired with a GPU or AI accelerator on the same package
using silicon interposers. Chiplet-based designs lower manufacturing losses caused by variations
and yield issues inherent in advanced node processes [52]. Additionally, chiplets enable manufac-
turers to combine different IPs flexibly, generating diverse SKUs targeting multiple markets with
similar designs. In chiplet architectures, compute units with varied performance characteristics
communicate through shared I/O dies to efficiently access off-chip resources, such as memory.
Effective resource sharing is essential to maintain overall system performance.

2.2.2 Interconnect

Interconnect technologies are pivotal for enabling efficient communication among heterogeneous
computing agents within and across integrated circuits. XBar switches [126] were used for in-
terconnection in the early days and are now gradually replaced by NoC [22] systems as the size
of the system scales larger. NoCs typically consist of interconnected routers arranged in defined
topologies, routing communication packets dynamically to their destinations.
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2.2.2.1 Router Design

Figure 2.1 shows the internals of a simple network router, similar to the one described in [42].
When a packet arrives at an input port of a router, it will first be buffered in the corresponding
buffer, as shown with 1 in the figure. 2 While it resides in the buffer before being routed to the
next node, the router will compute its next stop based on the routing and destination information.
3 The virtual channel and the switch allocators will determine the idle channels and decide which

direction or virtual channel has priority to send packets through the crossbar switch at the next
cycle. If a packet wins the allocation, 4 it can traverse the crossbar switch, 5 arrives at the
output buffer before it gets sent to the next node.

2.2.2.2 Arbitration in Interconnect Router

Various strategies exist for allocating router resources and prioritizing packets during arbitration:

• Static arbiters: These arbiters follow fixed policies, such as Round-Robin (RR), LRU, or
strict priority. They are typically not programmable and cannot adapt to changing system or
application-level requirements.

• Dynamic adaptive arbiters: These arbiters monitor recent traffic patterns and dynamically
adjust priorities to achieve desired bandwidth partitions. While more flexible, the partition-
ing policies must be pre-configured or set by low-level firmware.

• Quality-of-Service (QoS)-based arbiters: These arbiters assign a QoS tag to each data flow
or packet, indicating its urgency. Higher-urgency packets are prioritized. QoS status may be
generated by the application or by system-level initiators. While QoS can be used to enforce
bandwidth guarantees or perform operations like pipeline flushing [77], the static nature of
QoS tagging—typically set at request initiation—limits its responsiveness to overall system
dynamics.

2.3 Communication Protocols Between Hardware Compo-
nents

Efficient and well-defined communication protocols are fundamental to harnessing the potential
of heterogeneous hardware components. In this context, the term ”protocol” broadly refers to
communication conventions followed during the design and operational phases of hardware.
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2.3.1 Host-Accelerator Communication Conventions

Host-accelerator communication, demonstrated in Figure 2.2, typically employs shared memory
and Memory Mapped Input Output (MMIO) to manage data transfer and execution control. We
describe the conventions that hardware follows for intercommunication. Note that the conventions
here are agnostic to physical implementations (e.g., UltraPath Interconnect (UPI) [73], PCIe [6],
Infinity [11], etc.) or data transfer protocols (e.g., Core Cache Interface (CCI-P) [74], CXL [64],
Advanced eXtensible Interface (AXI) [17], etc.).

After the host connects to the accelerator, as indicated in Step 1 in Figure 2.2, the developer
creates a shared memory space between the host and the accelerator for them to pass inputs and
compute results. To kick off the kernel in Step 3 , the host writes inputs into the shared memory
and issues instructions with metadata ( i.e., input starting address, result write back address, etc.) to
the accelerator through (typically) MMIO. After receiving the instruction, the accelerator fetches
the input data from the shared memory, writes back the result to the specified write-back address,
and notifies the host.

A large kernel usually takes a relatively long time (on the order of milliseconds) to compute.
The host can usually context-switch to another thread while waiting for results, thus keeping the
host system busy and increasing the overall efficiency. The communication overhead induced by
kernel launch and result fetch, which is on the microsecond level, is low compared to the kernel
itself.

In contrast, the system is inefficient for instruction-level acceleration with the same approach.
For each request, the system pays the round-trip latency of host-acceleration communication for a
compute kernel that takes only tens of cycles. Meanwhile, the program on the host cannot proceed
until it receives the result. While the overhead for large kernels remains proportionally low due
to their longer execution times (milliseconds), instruction-level kernels incur prohibitive commu-
nication overhead (microseconds) relative to their brief execution durations (tens of cycles). This
discrepancy creates execution inefficiencies, as conventional latency-hiding mechanisms such as
context switching prove inadequate at these timescales, resulting in detrimental execution pipeline
stalls and reduced overall system utilization.

2.3.2 Computer eXpress Link (CXL)

CXL [64] is an emerging protocol that bridges the gap between high-bandwidth access and cache
coherence for heterogeneous hardware. Unlike traditional cache coherency models, which neces-
sitate uniformity in coherency implementations or software-based coherency management, CXL
centralizes coherency control at memory controllers, significantly simplifying integration and re-
ducing overhead. This approach allows heterogeneous devices to implement local coherency
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mechanisms internally, translating coherency messages into standard CXL format only when inter-
acting with shared memory resources. Thus, CXL streamlines coherent memory access in complex
heterogeneous environments.

2.4 Applications of Heterogeneous Design

To ground the discussion, we highlight real-world systems that exemplify the power and complex-
ity of heterogeneous design. These heterogeneous design applications are studied and evaluated
throughout this dissertation.

2.4.1 Q100 Accelerators

Q100 [159] is a specialized Database Processing Unit designed to efficiently accelerate database
applications by executing standard relational operations like joins, sorts, and aggregations directly
in hardware. It consists of specialized Application-Specific Integrated Circuit (ASIC) tiles, each
tailored to different database operators. By leveraging data streams, Q100 maximizes parallelism
and pipeline efficiency, greatly reducing the need for intermediate data storage and significantly
accelerating query execution. It’s particularly optimized for analytic database workloads, such
as those used in big data analytics. Q100 demonstrates substantial improvements in both energy
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efficiency (up to three orders of magnitude less energy consumption) and performance (up to 70
times faster) compared to traditional software database management systems running on general-
purpose CPUs.

2.4.2 Posit Number Format and Its Acceleration

Emerging numerical representations, such as Posit numbers [44], large-number arithmetic [105],
and residue number systems [91], aim to improve algorithm efficiency and accuracy. The Posit
number system provides superior precision and dynamic range compared to the IEEE-754 floating-
point standard [84]. However, widespread support for Posit numbers remains limited in main-
stream hardware platforms. Implementing Posit arithmetic directly in hardware circuits, typically
using FPGAs or embedded ASICs, can offer developers significant performance advantages. Inter-
action between the host and these specialized circuits would ideally occur at the instruction level,
leveraging high-performance communication interfaces.

2.4.3 Sequestered Encryption

Spectre [90] and Meltdown [98], researchers have sought robust solutions for secure hardware mi-
croarchitectures. SE provides isolation between secure computation enclaves and conventional,
potentially vulnerable circuits [23, 171, 114]. SE isolates sensitive data in encrypted form within
a dedicated hardware enclave, decrypting data only inside the enclave for secure computation.
Results are re-encrypted before leaving the secure environment. The host CPU interacts with
the isolated SE enclave via secure, simplified Reduced Instruction Set Computing (RISC)-style
commands transmitted over high-performance data buses. This secure partitioning ensures vulner-
abilities in the general-purpose system do not compromise sensitive computations.

2.5 Implications for This Dissertation

The concepts and limitations outlined in the previous sections provide foundational motivation and
context for the contributions of this dissertation. Specifically, the constraints identified in existing
design languages and associated tooling (§2.1) inspired the development of Twine, which addresses
these deficiencies through enhanced abstractions and integration mechanisms, with evaluations
including the Q100 accelerator (§2.4.1) presented in Chapter 3.

Moreover, inefficiencies in host-accelerator communication conventions (§2.3.1) directly in-
fluenced the design and motivation behind Zipper. Zipper’s efficacy was assessed using imple-
mentations of instruction-level accelerators for Posit number arithmetic (§2.4.2) and SE enclaves
(§2.4.3), described in Chapter 4.
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Finally, emerging chiplet technologies (§2.2.1) and communication standards, such as CXL
(§2.3.2), together enable heterogeneous systems that were previously impractical, allowing the
plug-and-play integration of compute components with differing coherence mechanisms to share
memory resources transparently. They underpin the assumptions and design choices incorporated
into Overpass. Overpass builds upon and advances conventional interconnect designs (§2.2.2),
improving system performance, as detailed further in Chapter 5.
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CHAPTER 3

Automating Modular Design for Rapid Generation
of Heterogeneous Architectures

“This is a language for mere mortals.”

Todd Austin, Professor at the University of Michigan

3.1 Introduction

As silicon scaling benefits wane, performance improvements in homogeneous systems are reaching
a plateau. Therefore, developers are building heterogeneous systems to meet distinct demands for
various workloads. However, a heterogeneous design inevitably increases complexity and leads to
exponential growth in design costs [118]. Reusing existing components and modules across new
systems is a promising strategy to mitigate this complexity explosion.

Although reusing modules can effectively reduce cost and enable fast design iteration, current
hardware design tools generally fail to facilitate creating modules that are easily reusable outside
their initial contexts. In existing workflows, a module is tightly bound to the particular component
it serves: the composing module’s timing behaviors and control signals are tailored solely to the
current design. Reusing that module outside the original component demands adjusting the timing
behavior of that module to satisfy new constraints, forcing developers to delve deeply into design
specifics. The necessity to understand every detail significantly lowers productivity and module
reusability, a phenomenon that software engineering research has long recognized [57]. Addition-
ally, in scalable systems, the increasing size of components and numerous modules complicate
the manual coordination of control signals. Design complexity further escalates if the composing

1The work presented in this chapter has been published in S. Chen, Y. Fisseha, J. -B. Jeannin and T. Austin,
“Twine: A Chisel Extension for Component-Level Heterogeneous Design,” 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Antwerp, Belgium, 2022, pp. 466-471, doi: 10.23919/DATE54114.2022.9774555.
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modules utilize different data formats. Such conditions create substantial challenges for hardware
designers, making designs intellectually burdensome, costly, and prone to errors.

We argue that existing popular HDL do not sufficiently address the above problem, leaving
designers to toil through the construction, debugging, and deployment of complex heterogeneous
designs.

Conventional HDLs, such as SystemVerilog [68] and VHSIC Hardware Description Language
(VHDL) [67], abstract I/O interfaces without differentiating clearly between data and control. The
low-level semantics of HDLs pose no requirement on a module’s behavior, shifting the respon-
sibility entirely onto designers to understand module behaviors and reconcile incompatibilities.
While some synthesis tools offer reusable building blocks, their highly vendor-dependent nature
severely restricts design portability across different target devices. On the other hand, HLS, such
as Vivado HLS [162] and SystemC [2], allows designers to translate software designs directly to
hardware representations. Although HLS significantly improves productivity by abstracting away
low-level hardware details, recent studies show that, in most use cases, HLS designs often fall short
of HDL-based designs in quality [93]. Despite the productivity advantages of HLS, HDLs remain
prevalent. Therefore, the solution presented in this chapter aims to improve heterogeneous design
capabilities specifically within the popular HDL Chisel.

Chisel[19] is a Scala-based hardware generation language that has been drawing much attention
recently. While Chisel introduces polymorphism to hardware design and provides standard mod-
ules to enhance productivity, it still does not sufficiently raise abstraction levels to substantially
ease the challenges of heterogeneous design. As a result, designers must manually manage control
signals, facing many of the same difficulties encountered with traditional HDL.

To effectively address these challenges in heterogeneous system design, we introduce Twine.
Built upon Chisel, Twine retains the strengths of Chisel while adding powerful new features de-
signed to ease the design burden of scalable heterogeneous systems significantly:

To better address the challenges posed to the designers of heterogeneous systems, we designed
Twine. Built upon Chisel, Twine preserves all the power and strength that Chisel already carries
while also introducing the following features that help alleviate much of the burden of designing
scalable heterogeneous systems:

• Standardized module-level control interfaces with built-in parameterization, buffering, and
reordering capabilities.

• High-level specifications for module-level producer-consumer relationships and dataflow
management.

• Automated system-level coordination of control signals and flexible data format conversions.
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These standard interfaces generalize modules, satisfying most system design requirements.
High-level semantics combined with automation facilitate easier scaling and reconfiguration of sys-
tems. Our evaluation demonstrates that Twine simplifies heterogeneous design processes without
sacrificing the design quality typically associated with manual, low-level HDL implementations.

3.1.1 Chapter Organization

The remainder of the chapter is organized as follows: §3.2 presents a motivating design chal-
lenge that illustrates the complexities of modular, heterogeneous hardware design. §3.3 introduces
Twine, detailing its abstractions for control interfaces, producer-consumer relations, and intercon-
nection automation. §3.4 describes the implementation of Twine, and §3.5 evaluates its impact on
design productivity, design quality, and user experience. The chapter concludes with a summary
in §3.6.

3.1.2 Chapter Contributions

We summarized the contributions of this chapter as follows:

• Identifying and characterizing the deficiency of current hardware design languages and the
root cause of low reusability of designs. We further identified the complexity of coordinating
control logic during the design space exploration phase of heterogeneous hardware design.

• Proposing Twine HDL, a new design extension that standardizes control interfaces and au-
tomates control logic generation through modular, reusable components.

• Evaluating Twine against industry-standard design languages, demonstrating that automat-
ing control logic dramatically reduces engineering overhead and enhances developer pro-
ductivity.

3.2 A Motivating Design Challenge

In this section, we break down the process of designing a highly heterogeneous data query archi-
tecture that can be reconfigured to provide different functionalities and meet various performance
requirements. We study the tasks a developer needs to complete while integrating various modules
as motivation for the Twine HDL capabilities.
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3.2.1 Heterogeneous Data Query Architecture

The heterogeneous data query architecture, which we demonstrate in a case study, is on the Q100
architecture [159]. Q100 is a well-recognized work in the database acceleration domain. It is
a highly modular design: it is composed of 7 functional tiles (e.g., Aggregrator, ColFilter,
BoolGen) and 4 auxiliary tiles (e.g., ColSelect, Append), all of which are highly configurable
to the specific query. When generating a hardware design for a query or a class of queries, the
generator maps and connects Q100 tiles to achieve optimal performance-area-power trade-offs, as
shown in Figure 3.1. There are three major aspects to consider during the design optimization
process:

• Depth: The depth of the accelerator is the number of stages from the input to the output,
which is mainly determined by query complexity. A complex query usually requires multiple
filters and functional stages that have to be placed sequentially. Synchronization must be
achieved at the end of each stage for valid data to arrive at the next stage with proper timing.

• Width: The Width of the accelerator determines the level of parallelism. As a rule of thumb,
data streams usually can be processed in parallel, and we can expect higher performance if
the architecture supports a high level of parallelism. However, the breadth of the architecture
is bounded by memory bandwidth, power, and area constraints, so that an optimal balance
may require Pareto analysis.
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• Ordering: The ordering of tiles affects the ordering of processing stages, which could have
a dramatic impact on overall performance. For example, aggregating data before ordering
it would reduce the latency of the ordering stage because there are fewer entries to process
after the data is aggregated. However, the system may need another aggregation stage after
ordering if duplicate keys exist in the data stream. The designer likely needs to consider a
variety of scenarios to make the optimal design choice.

3.2.2 Heterogeneous Hardware Design Process

3.2.2.1 Hardare Modules

To achieve high productivity, developers reuse and reconfigure pre-designed modules and integrate
them together to craft a suitable computation pipeline. Module reusability is essential for large-
scale designs whose size would otherwise necessitate a prohibitive amount of design effort. To
reuse existing modules effectively, developers need to consider and fully understand two aspects
of the module interface:

• Control interface: The control interface orchestrates the movement of data and maintains
the control status of the module itself. In practice, different designs usually have different
timing and flow control assumptions, and thus, different control interfaces. This interface
diversity requires developers to devote a lot of effort to thoroughly understanding the inter-
face. For example, the Q100 filter module consumes input from at least two modules
simultaneously and produces its result within the same cycle. The aggregate module can
take new input each cycle but only produces outputs after all records belonging to the current
category are in. The sort module takes a vector of values and cannot consume new input
during operation. Each distinct control interface dictates how developers should orchestrate
control logic and communications of the system.

• Data interface: The data interface defines the type and format of input and output data. In
hardware design, a data interface specifies the bitwidth of the ports, the semantic type of
the data, and the degree of vectorization of the data. In Q100, values need to be converted
from one format to another frequently, i.e., a signed integer needs to be converted into a
floating-point in floating-point multiplication and rounded back to a signed integer before
being delivered to the next module. Other modules such as sort and scalar ALU take in a
vector of data. Therefore, the data must be transformed between its parallel and serial forms.

In practice, it is difficult to completely separate the control interface from the data interface, making
changes to the data interface would necessitate changes to the control interface and vice versa.
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3.2.2.2 System-Level Configuration of Reusable Modules

Developers need to generate and connect all reusable modules in a specific order to achieve correct
functionality and optimal performance. Figure 3.2 illustrates the developer assembling a pipeline
and the various adjustments they can make in later stages of the design space exploration. In Figure
3.2, each node represents a hardware module.

The developer can change the system’s functional behaviors by inserting or removing modules,
as shown in Figure 3.2b and Figure 3.2c. An example scenario that would necessitate this task is
when developers want to apply a filter to the data stream to process rows within a table selectively.
To implement this functionality in Q100, we need to use multiple BoolGen modules that determine
the selectivity based on a comparison between the key value and the reference value, and then a set
of Filter modules that select or drop the input value based on the selectivity. To insert these new
modules into the pipeline, developers need to break existing connections within the system, wire
data ports of the new modules to the rest of the system, and re-design the control logic to ensure
correct dependency and synchronization between the new modules and the rest of the system.
Removing modules follows the same process.

Performance requirements and optimizations determine another category of configuration. The
developers may need to replicate or reorder the modules to alleviate the architectural bottleneck, as
shown in Figures 3.2d and 3.2e, respectively. In Q100, the scalar ALU can process multiple records
simultaneously, but connecting non-scalar modules with the scalar ALU interface requires buffers
and serialization modules. The exact control logic and buffer arrangements constantly change as
the position of ALU and the data interface change. Thus, the order of the modules would also
significantly impact performance. In a Structured Query Language (SQL) query where the users
decide to filter out certain records and calculate the sum of those records by different categories,
Q100 would have a filter layer and an aggregation layer. Both layers can reduce the number of
records for the later stage of the pipeline, so which one is applied first should be determined by
design space exploration. To explore a range of possible configurations, developers must correctly
modify the control behaviors and connections between multiple modules.

3.2.2.3 Design Steps

To assemble all the modules into a functional module with tunable parameters and adjust them to
achieve the desired performance, developers need to go through the following time-consuming and
error-prone steps:

1. Fully understanding the interfaces of the modules. Many bugs and design errors result from
misunderstandings or misinterpretations of the module interfaces.
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2. Adding glue logic between hardware modules. This includes inserting type conversion mod-
ules between module ports of different types, serializing and de-serializing between vector-
ized modules, and padding buffers between modules to accommodate back pressure. This
process would become prohibitively complex if developers needed to iterate and consider
the appropriate transformation for each possible case.

3. Coordinating and tweaking control logic. Developers need to consider all the possible com-
binations of modules where the behavior of one module can affect the rest of the system.
The fact that data ports between modules also need to be adjusted based on the configura-
tion, as described in step 2 , significantly increases the overall complexity and the number
of necessary changes for each distinct configuration.

We argue that to improve developers’ productivity, modern hardware design languages should
address these challenges and help developers complete these tasks. We will demonstrate how
Twine solves these challenges in the rest of the chapter and compare Twine with other HDLs with
regard to these tasks.

3.3 Twine Overview

Listing 3.1: An example of Twine in action. The highlighted lines show the features of Twine
extensions, with the rest of the lines showing syntax and semantics of Chisel.

// Input operands for FMA operation

class FPFMAOps(val numBit:Int , val entries:Int) extends Bundle{

val op1 = Vec(entries , new FP(numBit))

val op2 = Vec(entries , new FP(numBit))

val op3 = Vec(entries , new FP(numBit))

}

// Input operands for Sqrt operation

class FPSqrtOp(val numBit:Int , val entries:Int) extends Bundle{

val op = Vec(entries , new FP(numBit))

}

// Output Result

class FPResult(val numBit:Int , val entries:Int) extends Bundle{

val result = Vec(entries , new FP(numBit))

}
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class FPFMA(val numBit:Int , val entries:Int) extends TwineModule{

❶ val in = Input(new FPFMAOps(numBit , entries))

val out = Output(new FPResult(numBit , entries)

val ctrl = new DecoupledIOCtrl (1,2)

/* Computation logic for FMA(fused multiply -add) */

}

class FPSqrt(val numBit:Int , val entries:Int) extends TwineModule{

❷ val in = Input(new FPSqrtOp(numBit , entries))

val out = Output(new FPResult(numBit , entries))

val ctrl = new ValidIOCtrl (2)

/* Computation logic for Sqrt */

}

class TopLevelDesign extends TwineModule{

❸ val in = Input(new FPFMAOps (32,8))

val out = Output(new FPSqrtOps (16,4))

val ctrl = new DecoupledIOCtrl (3,2)

val fma1 = Module(new FPFMA (32,4))

val fma2 = Module(new FPFMA (32,2))

val sqrt1 = Module(new FPSqrt (16,2))

val sqrt2 = Module(new FPSqrt (16,2))

❹ in >>> fma1 >>> sqrt1

❺ in.op1 >>> sqrt2

❻ TwineBundle(sqrt1 , sqrt2 , sqrt2) >>> fma2

❼ fma2 >>> ctrl

}

In this section, we will demonstrate the features of Twine with a running example shown in
Listing 3.1. In this example, the top-level module is computing

out :=
√

in.op1 · in.op2+ in.op3 ·
√

in.op1+
√

in.op1 (3.1)

The top level design is composed of the four modules fma1, fma2, sqrt1, and sqrt2 as shown in
Figure 3.3. Module fma1 and fma2 both take 32-bit floating point inputs and have vectorization
of 4 and 2, respectively. The modules sqrt1 and sqrt2, on the other hand, implement 16-bit
floating-point operations and can take two inputs per cycle.

In a traditional HDL, the developers would be concerned about serialization, type conversion
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between module interfaces, and excessive control complexity caused by the additional auxiliary
codes. To relieve developers from complex control signal coordination and timing analysis at the
high level, Twine has the following enhancements.

Twine standardizes I/O and control interface. Twine provides four standard interfaces and
requires designers to choose one of them when designing their modules. The four standard inter-
faces are TightlyCoupledIOCtrl, ValidIOCtrl, DecoupledIOCtrl, and OutOfOrderIOCtrl.
Twine imposes timing requirements on how modules use the interfaces through sanity checks. 1 ,
2 , and 3 in Listing 3.1 show examples of Twine interfaces. In Twine, each hardware module is

a TwineModule which defines three variables:

• in: all input ports of the module

• out: all output ports of the module

• ctrl: the standard control interface used

Such requirements make understanding module behaviors considerably easier. The standard in-
terface enables Twine to implement high-level semantics and automation to simplify the design
process. We describe the details of the standard interfaces in §3.3.1.

Twine provides expressive high-level semantics to specify dataflow and producer/con-
sumer relations. As mentioned, Twine abstracts away the high-level design specification’s control
logic and timing behaviors. As such, Twine offers a set of semantics that are more expressive than
those in current design languages. It is more intuitive for developers to directly define producer/-
consumer relations at a high level, rather than connecting low-level ports and control signals. In
Twine, a new operator >>> directly specifies the relationships between modules and data ports.
4 , 5 , 6 , and 7 in Listing 3.1 show the use of Twine’s high-level connection operator between

modules and between separate values and a module.
Twine automates system-level control signal coordination and data format conversion be-

tween modules. There are two key challenges when assembling pipelines, especially for reconfig-
urable accelerators: coordinating control signals and converting data between module boundaries.
These two tasks are often considered ‘busy work,’ where designers need to put in considerable
effort to implement them correctly, but get little value out of doing so.

Twine automates the assembly stage for developers. Based on the producer-consumer relations
and the interface of each module, Twine first inserts necessary buffers and converters as intermedi-
ate modules between them. Twine then connects the data ports to the corresponding modules or its
newly generated intermediate modules. Lastly, Twine coordinates the control signals through the
standard interfaces to finish the last step of interconnection. As shown in Listing 3.1, developers
do not need to insert auxiliary logic to adapt to different interfaces or re-specify control logic; it
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fma1 sqrt1

fma2in out

sqrt2

Figure 3.3: An example of producer/consumer relations of modules.

is automated in Twine. This feature is particularly useful during design space exploration with
parameterization.

3.3.1 Control Interface Abstraction

In this section, we describe the four standard control interfaces in Twine and the differences be-
tween each interface.

Standard interfaces, such as AXI, have been widely adopted in the industry as a common prac-
tice. However, most standard interfaces, like AXI, are overly complex and inflexible for intra-core
communication. Other interfaces (e.g., DecoupledIO in Chisel) only define a set of I/O ports. The
language neither requires users to use standard interfaces in their designs nor enforces the way
those standard interface ports should be used, which limits the utility of having standard interfaces
in the first place.

Enforcing the use of standard interfaces makes hardware modules more predictable when
reusing them in higher-level designs. Twine provides four standard control interfaces that free
developers from needing to understand each module in detail. We describe the four interfaces
below.

3.3.1.1 TightlyCoupledIOCtrl

TightlyCoupledIOCtrl is designed for the modules with constant latency and simple timing
behaviors (e.g., a pipelined multiplier that always takes four cycles to compute the result). It
has the simplest interface and the lowest overhead. Since the input and output of this inter-
face are tightly coupled, it cannot accommodate variable latency. As shown in Figure 3.4a,
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Figure 3.4: Four standard interfaces in Twine.

TightlyCoupledIOCtrl has two control signals: stall and stuck. The module neither consumes
nor produces if stall or stuck signal is asserted; otherwise, it takes inputs and produces outputs
every cycle.

3.3.1.2 ValidIOCtrl

ValidIOCtrl is designed to be more flexible than TightlyCoupledIOCtrl to support non-
deterministic latencies during execution while maintaining low overhead. As shown in Figure
3.4b, ValidIOCtrl implements an additional pair of valid bits at both ends, which allows the
input side to be only loosely coupled with the output side.

The two new signals introduced in ValidIOCtrl are valid signals. The input valid bit notifies
the module of new available inputs, and the output valid bit signals the external system to handle
the new results produced by the module.

3.3.1.3 DecoupledIOCtrl

While ValidIOCtrl has increased flexibility, it cannot locally buffer the backpressure from down-
stream modules, so the backpressure will propagate further upstream and stall more modules.
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Table 3.1: Comparison between different interfaces. *Req. fixed lat.: Require Fixed Latency,
Intra.: Intra-module, Inter.: Inter-module

TightlyCoupled Valid Decoupled OutOfOrder
Flexibility Very low Low High High
Overhead Low Low High High

Req. fixed lat.* Yes No No No
Out-of-Order No Intra.* Intra. Inter.*
Backpressure Yes Yes No No

DecoupledIOCtrl is the first control interface in Twine where the inputs and outputs are entirely
decoupled. DecoupledIOCtrl supports FIFO buffers at both ends of the module to accommodate
backpressure locally. Those buffers can be easily customized and generated through parameters
during declaration. As shown in Figure 3.4c, DecoupledIOCtrl implements valid/ready pairs at
both ends of the module. valid/ready pairs provide a handshake mechanism to adapt to more com-
plex control logic. 1 in Listing 3.1 shows the declaration of a DecoupledIOCtrl with 1 and 2
buffer entries on the input end and the output end of the module, respectively.

3.3.1.4 OutOfOrderIOCtrl

For operations that have large latency variances (e.g., memory access), out-of-order execution is
necessary to exploit parallelism. OutOfOrderIOCtrl, shown in Figure 3.4d, is the interface de-
signed for such use cases. It is one of the most flexible, but also one of the most complex, interfaces.
The request that goes into an out-of-order module would be assigned a ticket number tick num

to enable out-of-order processing and completion. At the end of execution, the requests would be
either automatically reordered with tick num or passed on to another out-of-order module.

Buffer management and reordering are transparent to developers so they only need to focus on
handling incoming requests.

3.3.1.5 Comparison Between Interfaces

Table 3.1 provides a qualitative comparison of interfaces. As a rule of thumb, modules with naive
timing behaviors should use low-overhead interfaces. Those with complex functionalities and long
latency operations should implement the more flexible interfaces.

3.3.1.6 Adapting and Reusing Existing Designs in Twine

There are two ways to adapt and reuse existing designs in Twine: either in Verilog or Chisel. First,
the developers can extend a TwineAdaptionModule and implement one of the four standard Twine
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control interfaces without changing the internal logic of the existing designs. The extended mod-
ule can take the fullest advantage of Twine’s automation framework and be integrated seamlessly
into the existing Twine ecosystem. The second way is to integrate the existing modules manu-
ally. Developers can benefit from the part of the system that implements Twine interfaces without
sacrificing functionality in the parts that do not.

3.3.2 Specifying Producer/Consumer Relations and Dataflow

To improve the efficiency of specifying designs, Twine provides a set of semantics to express
producer-consumer relations rather than low-level port connections. The producer/consumer
model abstracts away the timing behaviors and control signals and allows users to focus entirely on
data dependency. Such a design philosophy makes design much more intuitive and enables high-
level design automation. Twine needs to collect information about the data dependencies between
each module to synthesize system control logic. To analyze the data dependency, we label each
module with producer, consumer, and/or stakeholder, relative to its neighboring modules. The
consumers are the modules that take in values directly from the current module. The producers are
the modules from which the input data originates. A stakeholder is a module that needs to monitor
the status of the other modules to make control decisions. For example, when there is one producer
with multiple consumers, the producer can only release the results when all consumers are ready
to consume. In such a case, each consumer needs to monitor the status of other consumers to avoid
duplication and ensure correctness. There are two types of stakeholders: producer-stakeholder
(p-stakeholder) and consumer-stakeholder (c-stakeholder). P-stakeholders share at least one com-
mon consumer, and c-stakeholders share at least one common producer. Taking the design shown
in Listing 3.1 and Figure 3.3 as an example, relations between the modules are shown in Table 3.2.
Module sqrt1 and sqrt2 are p-stakeholders for sharing a common consumer fma2; fma1 and
sqrt2 are c-stakeholders for sharing a common producer top.

Users only specify the producer/consumer relations in the specification. Twine determines
stakeholder relations during the elaboration process. Users can specify a producer/consumer re-
lationship between any two Twine objects with >>> operator as producer >>> consumer. Twine
will match the ports on both sides if a bundle of ports is provided and infer the producer/consumer
relations from the matching ports.

3.3.3 Component Interconnection Automation

Based on the module interfaces and high-level specification of producer/consumer relations, Twine
automates two challenging parts of the design. The first part is control signal coordination. For a
large-scale and reconfigurable design, the modules and their topology are not concrete or material-
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Figure 3.5: Examples showing interconnections between different modules.
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Table 3.2: The relationship between modules in a system shown in Figure 3.3 and specified in
Listing 3.1.

module consumer producer p-stakeholder c-stakeholder
top fma1,sqrt2 fma2 N/A N/A

fma1 sqrt1 top N/A sqrt2
fma2 top sqrt1, sqrt2 N/A N/A
sqrt1 fma2 fma1 sqrt2 N/A
sqrt2 fma2 top sqrt1 fma1

ized at the design stage because the modules of the full design and the connections between them
will only be fully known after a design space search is complete and all parameters have been set.
It is challenging for designers to identify the producer/consumer pairs with potential stakeholders
and coordinate the control signals correctly. The second part is data format conversion between
modules. It is not uncommon for a heterogeneous design to reconfigure module bandwidth with
different data types. It is important to accommodate these challenges at the language level.

3.3.3.1 Coordination of Control Signals

Control signals in a hardware design determine when a module should consume and release the
data. Twine standardizes the control interface. For each module, Twine checks the module’s
status and controls its behavior through a set of pre-defined signals. Twine then synthesizes the
system control logic based on the interface each module uses and the high-level specification that
describes the interconnection between modules. All the standard interfaces defined in Twine can
be mixed and matched with each other, either on the same level or across levels (e.g., a parent
module connecting with a child module). Here, we include several examples to demonstrate how
this process works. The complete connection rules are available in the Twine documentation.

Figure 3.5a shows an interconnection between two TightlyCoupledIOCtrl modules. In this
case, two modules would proceed in a lockstep manner—either proceeding together or stalling
together. Figure 3.5b shows an interconnection between a TightlyCoupledIOCtrl module and
a DecoupledIOCtrl module. The DecoupledIOCtrl module only needs to bind its input side
to this relationship, thanks to its flexibility. In contrast, the TightlyCoupledIOCtrl module
is locked in step with the input side of the DecoupledIOCtrl module. Figure 3.5c shows an
interconnection when there are multiple producers and one consumer. In this case, two producers
are p-stakeholders to each other; therefore, they need to listen to both the consumer and the other
stakeholder to sync their data transactions. All connections can be generated automatically by
Twine.
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Figure 3.6: Twine inserts a converter between modules to adapt different data types.

3.3.3.2 Data Format Conversion

Twine can automatically convert data formats between modules. There are two types of conver-
sions between module boundaries: type and width.

A type conversion occurs when the two connecting ports have different data types. At the cur-
rent stage of development, Twine supports automatic conversion between unsigned integers, signed
integers, and common formats of floating-point data (i.e., 8-bit, 16-bit, 32-bit, 64-bit). The frame-
work can be easily extended to support more types as needed. When Twine detects mismatched
data types at the two ends of the connection, Twine will automatically insert a converter in between
to adapt different types.

A width conversion happens when the two connecting ports have different numbers of units
produced and consumed each cycle. This usually occurs when there are vector modules in the de-
sign. Twine will insert serializers or de-serializers between modules based on the width difference
between interfaces.

If the converter is fully combinational, it is transparent to the surrounding modules and does not
change the control logic. If the converter takes multiple cycles, Twine will treat it as a complete
module and update the producer/consumer relation map to rewire the control logic, as shown in
Figure 3.6.

3.4 Implementation

In this section, we describe the implementation of Twine. Twine is completely backward-
compatible with Chisel and supports all Chisel functionalities. Developers can opt in to Twine for
their design by simply inheriting from TwineModule when declaring modules. A TwineModule

can be used as a normal Chisel module as well. When a Twine operation is evaluated, it is trans-
lated into a set of Chisel operations, inserts conversion modules where necessary, and registers the
connection information in the Twine profile–—a collection of information that guides the system’s
synthesis at later stages. The connections between modules are only complete after all statements
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have been evaluated and the context information has been fully collected. We add hooks into the
Chisel elaboration phase to initiate Twine synthesis after all statements have been evaluated. Twine
then analyzes the producer/consumer relations to finalize connections for control coordination.

The workflow from Twine to FIRRTL are as follows(Twine-specific steps are marked with ∗):
1. Generate low-level modules using Chisel. Twine modules are implemented with a standard

Twine interface.∗

2∗. Collect high-level information from Twine specification.
3∗. Generate necessary buffers and converters. Insert them into the right locations based on the

high-level specification.
4∗. Reconstruct the roles and relations of Twine modules.
5∗. Coordinate control signals. Interconnect all modules.
6. Compile Chisel primitives into FIRRTL representation.
7∗. Checks that modules meet the required standards to generate correct Twine de-

sign (e.g., TightlyCoupledIOCtrl module has fixed latency, ready and valid signals in
DecoupledIOCtrl are not interdependent).

8. Emit finalized FIRRTL files.

3.5 Evaluation

A hardware design language should be easy to learn and easy to use. It should make users more
productive at what they do without compromising the design quality. Therefore, we evaluate Twine
across three key metrics: design productivity, design quality, and early adopter experience.

3.5.1 Design Productivity

To evaluate productivity, we designed a library of data processing modules. The library includes
modules essential to many data processing workloads (e.g., aggregate, column filter, and boolean

generation). We use building blocks to assemble an accelerator that speeds up the processing of
complex SQL queries. The accelerator first filters out the selected rows, then adds two columns
together, and lastly aggregates results by the key. We explore the design space by exploiting
request-level parallelism and data-level parallelism. We exploit request-level parallelism by adding
more modules at the front end to filter multiple requests concurrently, and we exploit data-level
parallelism by vectorizing the ALU.

We hand-built 12 different design configurations with various memory bandwidths and degrees
of vectorization to find the optimal design balance between performance and area. To take ad-
vantage of increased memory bandwidth, developers must place more modules on the system to
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Table 3.3: Area and frequency comparison of RISCV-MINI in Chisel and Twine.

RISCV-MINI in Chisel RISCV-MINI in Twine
Area 727004.94 µm2 725937.9µm2 (-0.14%)

Clock Period 0.85 ns 0.82 ns (-3.5%)

exploit data parallelism, while also considering area and power budgets. The degree of vector-
ization will cause the module interface to change. Thus, developers need to adapt and buffer the
data between the vectorized modules and non-vectorized modules. These two tunable parameters
will lead to a process in which the developers must add, remove, change, and reconnect hardware
modules, which is common in the design space exploration phase of heterogeneous design.

We first simulate the accelerators in Verilator to estimate the average number of cycles each
design takes to process 80 requests. Then, we synthesize each configuration to determine the clock
period and estimate the area. Since we focus on evaluating design methodology rather than the
design itself, we use performance and area as examples in this experiment. The developer can
measure different metrics based on their targets. The performance is measured as the average la-
tency required to process 80 requests. Figure 3.7 shows the 12 different configurations we explored
with regard to performance/area. Through the figure, we can identify and label five Pareto optimal
configurations.

We then compared the handwritten implementations in three different design languages: Twine,
Chisel, and SystemVerilog. Figure 3.8 shows the number of modules and the total number of lines
required to assemble the eight most representative configurations in different languages. We count
the number of line changes for each language to specify every target configuration from the base-
line design, where the accelerator can read one request per cycle and has only one ALU. Thanks
to high-level specifications and automation, the number of changes in Twine is primarily affected
by the number of new modules and new producer-consumer relations, while implementations in
Chisel and SystemVerilog also need to consider timing behaviors and data formats. In Chisel and
SystemVerilog, we need to manually coordinate signals for each new module and modify the con-
trol signals for existing ones that are indirectly affected by the new configuration. In Twine, such
tasks are automated during design elaboration. . Our results show that designers write and modify
significantly less code in Twine to assemble a new scalable system with reusable modules, which
results in improved productivity and facilitates design space exploration.

3.5.2 Design Quality

To verify that Twine achieves comparable design quality to Chisel, we ported an in-order RISC-V
core [87] from Chisel to Twine. In the original design, the datapath, all stage registers, and the
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control logic are specified inside one monolithic module. In the Twine design, all function units
and stages are encapsulated into nine separate modules. The top-level module only specifies the
data flow between modules and the communication between the datapath and the cache. Table 3.3
compares the area and frequency between the two designs synthesized with IBM 45nm SOI12S0
CMOS process. Twine can achieve approximately the same performance as the Chisel design. The
marginal variance between the two designs is due to slight differences in the interface.

3.5.3 Early Adopter Experience

To assess the impact of Twine on new users, we assembled a team of seven graduate students with
diverse backgrounds but no prior experience with Twine. Out of the seven students, one had used
Chisel before, two had experience with hardware design but had not used Chisel, and the rest had no
experience with hardware design. The early adopters were given a library of Twine modules with
a sample design and a description of what the design does. The sample design has 10 modules and
functions as a basic data filter and aggregation engine. They were then asked to insert new modules
into the pipeline to add another layer of data filtering and accommodate an additional stream of data
input based on a new description. There are twice as many modules in the new design as compared
to the sample design. All of them learned the language and modified the design correctly within
35 minutes, even though many of them had no hardware design background. On average, each of
them changed 12 lines of code, or 22% of the original sample codes, to accommodate a system
that was twice as complex. All of them responded positively when asked about their experience
with Twine.

3.5.4 Limitations

During our evaluation, we identified a few cases where the highly structured nature of Twine had a
negative impact on design quality. First, the standard interfaces in Twine are not sufficiently flexible

for designs to change processing granularity dynamically. A module may dynamically decide to
batch requests together for higher throughput or proceed with them immediately for lower latency.
Since the conversion logic is finalized during generation, the module cannot change it during ex-
ecution. To overcome this limitation, developers can fall back to Chisel to specify control and
conversion logic manually or integrate the functionality inside the module. Meanwhile, dynamic
scheduling can be easily achieved through software. Second, there may be missed cross-module

optimization opportunities. Since Twine imposes high modularity requirements, developers may
not be able to easily identify cross-module optimization opportunities (e.g., early forwarding).
However, such opportunities are usually hard to find and exploit in scalable heterogeneous sys-
tems.
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3.6 Chapter Summary

In this chapter, we discuss the emerging challenges hardware designers face in the new age of het-
erogeneous designs. We propose Twine, a Chisel extension that supports module-level abstraction
to improve accessibility and productivity. Twine standardizes module interface, provides high-
level semantics, and automates system-level control coordination with inter-module data formats
adaptation. Twine is evaluated against Chisel and SystemVerilog for developer productivity by
performing the same design space explorations. Twine is further assessed by its design quality (de-
sign area and timing) by replicating a three-stage RISC-V CPU, which is initially written in Chisel.
Our results show that Twine is easy to learn, easy to use, and considerably improves productivity
for designing heterogeneous hardware while retaining the same high design quality.
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CHAPTER 4

Tolerating Communication Overheads in
Heterogeneous Designs

4.1 Introduction

Heterogeneous systems with domain-specific accelerators have been widely adopted in practice
[146]. In such systems, the host offloads a heavy compute kernel to the target accelerator and
retrieves the result asynchronously when it is ready. Under such a design paradigm, the host and
the accelerator sustain the least communication possible: once to initiate the request and once
to receive a result. As a result, the communication latency overhead between the host and the
accelerator is often overlooked because it is trivial compared to the accelerator execution time.

However, recent developments in security [23] and computing theory [44, 128] necessitate the
acceleration of instruction-level kernels.

A short instruction-level kernel is a simple, functional accelerator command that takes multiple
input operands to produce a result. These instruction-level kernels have an edge over large kernels
because they provide programmers with general-purpose operators and extra features to support
arbitrary algorithms, while adding minimal cost to the overall system.

This chapter will use two instruction-level kernels in the production environment as case stud-
ies. The first one is a customized secure enclave [23] that supports security operations on sensitive
ciphertext, where the key resides only in a separate, standalone hardware device. These security
operations are RISC-like and Turing-complete but cannot be executed on a regular CPU due to
restricted security requirements. The second one is the hardware support for Posit32 [44, 128].
Posit32 is a new number format proposed to replace the IEEE 754 floating-point format. Since
Posit32 supports general scientific calculations, the kernels are RISC-like arithmetic instructions.

1The work presented in this chapter has been published in Shibo Chen, Hailun Zhang, and Todd Austin. 2025.
Zipper: Latency-Tolerant Optimizations for High-Performance Buses. In Proceedings of the 30th Asia and South
Pacific Design Automation Conference (ASPDAC ’25). Association for Computing Machinery, New York, NY, USA,
567–574, doi: 10.1145/3658617.3697546
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Other examples include Microchip Divide and Square Root Accelerator [151] and extended Float-
ing Point Coprocessor [147], to name a few.

Such light kernels exhibit two distinct characteristics compared to large kernels. First, executing
an instruction-level kernel only takes tens or hundreds of cycles. This is a tiny fraction of the time
compared to computing a large kernel. Second, since instruction-level kernels are more general-
purpose, they do not harden control logic into hardware circuits. Instead, they rely on the host to
control and schedule decisions, leading to frequent host-accelerator communications. For these
reasons, applications that depend on these instruction-level kernels are typically susceptible to
communication latency.

Such kernels are best served with tight integration into the CPU pipeline. However, before
major CPU vendors add them as Instruction Set Architecture (ISA) extensions to their designs,
developers must support them through separate IPs, acceleration cards, FPGA fabric, or Chiplets.
Recently, Intel introduced its Chiplet-based FPGA development board as part of the prototyping
and evaluation loop.[95, 75] Developers can trial and error with FPGA before mass-producing
their customized designs. Such advancement opens more doors to accelerators of various sizes,
assuming communication latency issues can be mitigated.

While state-of-the-art high-performance data buses have increased memory bandwidth over the
years, access latency has not scaled in proportion because link traversing does not scale well as
the technology node shrinks [168]. A recent study [100] shows that the round-trip latency through
the popular PCIe Gen 3.0 [6] or Intel UPI [73] is at the microsecond scale. Modern computer
systems cannot efficiently tolerate microsecond-level latencies. Thus, most of these latencies are
fully exposed [20]. Inefficiency in latency tolerance hinders the broad deployment of instruction-
level accelerations in production environments. New communication protocols, like CXL [64],
also do not fully solve the latency challenge, as they cannot overcome the fundamental physical
design limitations.

Although communication latency is hard to reduce through improved physical designs, we ob-
served two significant opportunities for latency-tolerant optimizations. First, there is parallelism at
both the request and the device level. We can enhance host and accelerator utilization by enabling
out-of-order and parallel execution; second, instruction-level kernels exhibit significant temporal
locality: the results of previous requests often become inputs for subsequent requests. We can
exploit this locality to reduce data movement. However, there are multiple challenges to overcome
before it is possible to capitalize on these opportunities in a real production system:

• Performance projection: Since latency-hiding optimizations on heterogeneous systems
usually comprise multiple moving parts, it is desirable to project whether applying these op-
timizations is beneficial before devoting the engineering efforts to building them. However,
this is a complex task as the performance gain relies on multiple hardware parameters and
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intrinsic features of the workload.

• Complex parallelism model: data dependency can exist between a host instruction and an
accelerator instruction or within accelerator instructions. Harvesting parallelism requires a
sophisticated scheduling algorithm that understands the semantics of two sets of ISA and
handles data communication across device boundaries.

• Data tracking: Since data is continually moved between host and accelerator, the system
needs to precisely track the location of the data to ensure functional correctness.

• Design Complexity: Considering the sheer size of possible accelerator designs and hard-
ware platforms, customizing compilers would be a heavy technology burden for ordinary
system developers. To make things worse, major vendors only provide function-level
APIs [163, 104], which makes adding compiler support even more difficult. A portable
and extensible solution is necessary to make instruction-level accelerations accessible and
scalable.

To address the issues above and make instruction-level acceleration accessible, we first propose
a qualitative analytic model. This model helps system designers quickly identify opportunities
in their instruction-level acceleration workloads for optimizations and projects how much benefit
latency-tolerant optimizations can provide through a collection of hardware/software constraints:
the degree of temporal locality, the length of data dependency chain between accelerator instruction
and the host instruction, the memory access latency, and the degree of parallelism.

To exploit the opportunities identified in the analytical model, we further propose Zipper.
Working on top of existing data buses, Zipper is a protocol optimization layer that optimizes
latency-sensitive applications deployed on a heterogeneous system where two devices are con-
nected through a high-performance data bus. It dynamically analyzes data dependency, tracks data
movement across devices, and exploits temporal locality and parallelism as a program proceeds.
Zipper uses a software-defined request scheduling approach that requires no modification to appli-
cation logic, compilers, or data buses. On the software side, Zipper provides a runtime library that
identifies temporal locality and parallel execution opportunities and schedules optimized acceler-
ator requests to enable resource-constraint-aware parallelism and data reuse. The implementation
details of this runtime library are hidden from software developers, and the developers can use
encapsulated data types as if they were host-native. On the hardware side, Zipper offers a small
request buffer to cache data and enables out-of-order execution of requests with data reuse.

We conducted experiments on two benchmark suites with two distinct instruction-level kernels
to demonstrate the effectiveness of Zipper. Our experiments show that Zipper provides end-to-end
speedup from 1.5x to as much as 8x.
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4.1.1 Chapter Organization

The remainder of the chapter is organized as follows: §4.2 explores optimization opportunities
in host-accelerator communication and quantifies the costs of instruction-level acceleration. §4.3
describes the Zipper architecture, including its communication protocol, hardware structure, and
latency-tolerant enhancements. §4.4 details the experimental setup and presents performance eval-
uation results. §4.5 discusses design trade-offs, accelerator memory access patterns, and the impact
of different optimization techniques. Limitations are presented in §4.6, followed by the chapter
summary in §4.7.

4.1.2 Chapter Contributions

We summarize the contributions of this chapter as follows:

• systematically studying optimization opportunities in instruction-level acceleration on a het-
erogeneous system.

• proposing a qualitative analytic model to estimate the benefits of various optimization tech-
niques for instruction-level acceleration on a heterogeneous system.

• proposing a general protocol optimization layer, Zipper, to tolerate communication latency
over high-performance buses.

• thoroughly evaluating Zipper’s performance improvements and area overhead with two case
studies.

• providing insights into Zipper’s performance improvements and breakdown of the contribu-
tions of each Zipper feature.

• discussing the scalability and compatibility of Zipper to various designs and platforms.

4.2 Discovering Optimization Opportunities

This section will discuss three key opportunities to optimize instruction-level acceleration and pro-
pose a new model to help developers understand the true performance implications of instruction-
level acceleration.
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Figure 4.1: A step-by-step optimization for the instruction sequence shown in Algorithm 4.1

Data: An array o f 2n elements : arr[2n], A write−back address addrwr
Result: y = ∏

2n−1
i=0 ai over special operator ⊗

i← 0; result← 1
while i < (2n−1) do

1 : a← load(Mem[arr+ i])
2 : b← load(Mem[arr+ i+1])
3 : c← a⊗b
4 : f etch c
5 : result← c⊗ result
6 : f etch result
7 : i← i+2;

end
8 : Mem[addr {wr}]← result

Program 4.1: A reduction algorithm with operator ⊗.
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4.2.1 Optimization Opportunities

Despite the inefficiencies of instruction-level acceleration, many exploitable opportunities exist to
compensate for the communication overhead. In this section, we use an example reduction algo-
rithm over an abstract hardware-accelerated operator⊗, as shown in Algorithm 4.1, to demonstrate
existing latency-tolerant opportunities. In this algorithm, we want to calculate the product of the
2n inputs over a hardware-accelerated operator ⊗ and store the result in the write-back address.
The developer chooses to provide only the operator acceleration for its generality and small area
footprint, and executes the rest of the instructions on the host. The accelerator is attached to the
host system, which runs the algorithm by high-performance data buses, i.e., UPI, PCIe, etc.

Figure 4.1 shows the data-dependence graph of Algorithm 4.1 and the optimizations to eliminate
dependencies and enable parallelism. Starting with the unoptimized implementation in (a), the
developer partitions the instructions based on the devices’ capabilities: execute instruction 1, 2, 4,
and 6-8 on the host, and offload instruction 3, 5 to the accelerator. An off-the-shelf compiler cannot
analyze and optimize cross-device dependencies; therefore, the system must execute instructions
sequentially in program order. Since the shared memory used for communication is small, the host
must fetch the results back to its own memory space to free up space for future transactions. In the
unoptimized design scheme, all accelerator results need to be fetched back before the system can
continue execution. The system pays the full round-trip overhead for each accelerator instruction
in this unoptimized implementation.

4.2.1.1 Exploitable Temporal Locality

We first notice that not every dependency is created equal. A cross-device data dependency is
much more costly than a local one due to the communication overhead. Based on this observa-
tion, we eliminate cross-device dependencies and replace them with local ones whenever possible.
That is, instruction 5’s two operands result from instruction 3 and its result from the last itera-
tion. Therefore, instruction 5 does not need to get its inputs from the host, and we can move this
cross-device dependency to a dependency that is local to the accelerator, as shown in (b). By relo-
cating cross-device dependencies, we can avoid much inter-device communication and thus reduce
communication overhead.

We observe that many applications exhibit temporal locality on the accelerator side: the re-
sult of an instruction is likely to be used by its subsequent instructions as input operands, which
presents many opportunities to relocate cross-device dependencies. §4.5.2 presents a detailed anal-
ysis of the temporal locality of applications.
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4.2.1.2 Device-level Parallelism

More optimization opportunities appear once cross-device dependencies have been relocated to
the accelerator. Instructions 4 and 6 block instructions that fetch results from the shared memory.
After the dependencies have been relocated, instructions 4 and 6 can now be pushed off and away
from the critical path. This means the system does not need to block the program to fetch results,
as shown in (c). The host can continue execution while the accelerator is working on the received
requests. Being non-blocking, the host can run ahead to fetch new data for future accelerator
requests. As long as there is no data dependency across devices, the two devices can run in parallel
and do not need to synchronize.

4.2.1.3 Request-level Parallelism

After relocating the data dependencies and unleashing the device-level parallelism, we can com-
pletely offload a sequence of requests to the accelerator. We can also extract request-level par-
allelism locally on the accelerator to maximize the performance gain. In our example, since in-
struction 3 is independent of previous accelerator instructions, shown in (d), it can bypass previous
requests or interleave with other requests. The only limitations would be the number of requests
the accelerator can handle simultaneously and the accelerator’s compute throughput.

The observed optimization opportunities above are innate to the program. Optimizing for one
aspect does not necessarily affect another. However, when the resource is limited, there could be
coupling effects between them, i.e., reordering the requests may affect both locality and paral-
lelism.

4.2.2 Assessing the Cost of Instruction-level Acceleration

Knowing these opportunities exist, how do we estimate the performance of instruction-level ac-

celeration? To answer this question, we propose a qualitative model that helps developers assess
the performance of instruction-level acceleration and identify optimization opportunities in their
software or hardware implementation. The model aims to provide an intuition of observed opti-
mization opportunities and a reference for developers to optimize their programs.

Figure 4.2 shows our approach to evaluating the optimization opportunities of instruction-level
acceleration. The y-axis is the average latency for an accelerator request. The x-axis is the ac-
celerator’s local data reuse rate. A higher local reuse rate suggests more opportunities to relocate
cross-device dependencies to local dependencies. Parameters and symbols are annotated in the
figure and thus omitted in the text.

The most straightforward implementation has no optimization. The average latency Loriginal

is the summation of the cost of all the sequential operations starting from the host initiating the
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Lmmio = MMIO Latency
La_c = Accelerator Compute Latency
Lh_r= Host Memory Read Latency
Lh_w = Host Memory  Write Latency
La_r= Accelerator Memory Read Latency
La_w = Accelerator Memory Write Latency

Loriginal = Lmmio+La_r +La_w + La_c +Lh_r

d = Average Distance Between DEF and USE
α = Percent of Results Used on the Host

r = Accelerator Local Operand Reuse Rate

d

α

Llazy = Lreuse - d 

Leliminate_x_device_dep= Llazy *α

Lreuse = Loriginal - La_r *r

1

Lreal_cost= Leliminate_x_device_dep*(1/β)

1/β

β = Average Number of Requests that can be Interleaved

Without Optimizations

With Local Data Reuse
With Lazy Fetch
With Cross Device Decoupling

With Request Level Parallelism

Higher

Higher

Figure 4.2: Zipper model factors in multiple parameters to identify optimization opportunities.

request until it receives the result, which includes a MMIO Write Request from the host to the
accelerator, a pair of Mem Read and Mem Write from the accelerator, the computation latency on
the accelerator, and a Mem Read request for the host to fetch the result back.

Then, we start from the first optimization opportunity: exploiting temporal locality. We assume
the accelerator data reuse rate is r. Reusable data is a result that will be used as input operands for
subsequent requests. We do not need to access the shared memory to get those operands, and thus
save Lar ∗ r from Loriginal .

After relocating the dependencies, we can start to enable device-level parallelism. We classify
accelerator requests into two categories: results used on the host or results used solely by subse-
quent accelerator instructions. We assume α percentage of requests fall into the first category and
the rest fall into the second category. For the first category, the host needs to block execution to
fetch the results from shared memory temporarily. However, if the host does not need the result
immediately after issuing, the host can continue execution and only block when the result is re-
quired. Both the host and the accelerator can proceed in parallel during this period. Assume the
average time difference between the host issuing the request and the host requiring the result is d;
we can deduct this d from our estimate because the system is not affected during this period. Their
cost can be optimized entirely for the second category of requests because the host does not need
to block those requests under any circumstances.

The last step is to enable request-level parallelism. Assume the level of parallelism is β , where
β is the average number of interleaving requests the host can send to the accelerator simultane-
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Figure 4.3: Comparison of the overhead of offloading among different bus interfaces, level of
parallelism, and the presence of optimizations. Numbers in parentheses represent the estimated
read/write latency in nanoseconds [100, 150].

ously; the overall cost the system needs to pay for these β requests is approximately the same as
one request, assuming there is enough computing resource.

Taking all these factors into account, we arrive at the equation for our average latency of an
accelerator request:

Lreal cost =
(Lmmio+La r∗(1−r)+La w+La c+Lh r−d)∗α

β
(4.1)

4.2.3 Pushing the Boundary of Kernel Offloading

We use the model to estimate the potential overhead reduction with an optimal scheduling and
offloading strategy. Figure 4.3 shows the overhead of offloading across three types of popular bus
interfaces for accelerators—UPI/QuickPath Interconnect (QPI), PCIe, Ethernet—and a compari-
son between the unoptimized and optimized implementations over different levels of request-level
parallelism. The solid lines represent overhead without optimization, and the dotted lines represent
the optimized versions. In the study, we assume the operand reuse rate is 50% and the host-side
result utilization rate is 23%, which will be further discussed in §5.4.

As a rule of thumb, it is beneficial to offload the kernel when the time difference between em-
ulating on CPUs and computing on the accelerator is greater than the communication overhead.
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Without any optimization, the offloaded kernel has to compensate for microsecond-level commu-
nication overhead for the optional offloading to be beneficial. Moreover, the performance cost
would be rather formidable if the software had to offload specific operations to a remote entity, as
in many security applications. In comparison, when optimally optimized, the amortized penalty
per request can be reduced to tens of nanoseconds. This would open up more design space for
fine-grained offloading, and the overall system would be more friendly to security applications.

4.3 Architecting Zipper Optimizations

While the analytic model helps developers evaluate the optimization potential of an application
and a system setup, extracting values from those opportunities is not easy. To enable those opti-
mizations, the system will need to:

• Support device-level and request-level parallelism: To enable device-level parallelism,
the interface must be non-blocking on the host side, correctly honor data dependencies, and
fetch accelerator request results. The interface must also handle interleaving requests to pro-
vide exploitable request-level parallelism opportunities for the accelerator. This optimization
hides communication latency by decoupling and overlapping instructions.

• Enable accelerator-side caching to eliminate temporally adjacent data transfers: to
relocate cross-device dependencies and eliminate temporally adjacent data transfers, the host
needs to analyze data dependencies, track data movements, and manage coherence between
the two devices. The accelerator requires an additional structure to cache recent results and
eliminate memory transactions through the data bus.

• Exploit memory coalescing opportunities: For many data buses, each read access will
fetch a chunk of continuous memory data, usually one complete cache line or 64 bytes. By
coalescing multiple operands, we can improve the efficiency of data bus bandwidth.

To bring these optimizations to instruction-level acceleration, we propose Zipper. Zipper is a
protocol layer that resides between the physical bus and the application logic, and thus it
does not require any changes to the compiler, compute kernel, or the underlying data bus.

4.3.1 Overview of Zipper

Zipper uses a set of communication semantics that capture the locality and dependency information
to connect the host and accelerator. Zipper adds a request buffer table to the accelerator that
tracks the status of operands and caches recent request results. On the host side, Zipper uses a
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Figure 4.4: Zipper request layout template. WB = write back, m = mode, v = version.

runtime library to analyze data dependency and catch the data reuse opportunities by observing
and tracking accelerator requests. The runtime library also manages communication between the
host and the accelerator, hiding tedious implementation details from software developers. The rest
of this section will first describe the communication protocol between Zipper host and accelerator,
Zipper’s hardware structure, and then explain Zipper’s approach for enabling device and request-
level parallelism, accelerator-side caching, and memory coalescing.

4.3.2 Zipper Host-Accelerator Communication Protocol

In Zipper, the host sends requests to the accelerator through MMIO and communicates input
operands and results with the accelerator through shared memory.

Figure 4.4 shows the template of a Zipper request. The exact number of bits in each field and
the number of fields can vary depending on the use case. As a rule of thumb, each request should
include Instruction, Write-back Address, and Operand Information. Each request can
have multiple operands. Due to a recent request, each operand can reside in shared memory or
within the Zipper hardware structure. The request includes three pieces of information for each
operand to help hardware fetch the correct operands:

• mode: The mode bit tells whether the operand is in the shared memory or the hardware
buffer table.

• address: This is the operand’s location in the memory or the buffer, depending on where it
resides.

• version: Zipper uses the version bit to distinguish whether the value in the memory is
input to the most recent request or expired input for the past requests. §4.3.6 will provide a
detailed explanation.

The shared memory is the communication channel between the host and accelerator for input
operands and results. We partition the shared memory into the operand partition and the result
partition. The input operands are continuously placed in the operand partition and wrapped over
to reuse the old memory when it reaches capacity. The result partition maintains the bijection with
the accelerator-side buffer table entries.
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Figure 4.5: Zipper hardware structure and life cycle of an accelerator request. Some design details
are omitted due to space limitations.

4.3.3 Zipper Hardware Structure

Zipper hardware resides on the accelerator side and handles requests it receives from the host.
It consists of four parts, as shown in Figure 4.5: a request buffer table, an execution scheduler,
a memory controller, and the accelerator. The memory controller is platform-specific, and the
instruction-level kernel is user-specific. Zipper does not need to make intrusive modifications to
these two components to work.

Zipper uses the request buffer table and the execution scheduler to enable request-level paral-
lelism. In 1 , when Zipper hardware receives a request from its software counterpart, typically
through MMIO, it will first store the request information in the request buffer table. The request
buffer table stores and tracks all details of pending and recently completed requests, including the
instruction, the status of each operand, and the write-back address, among others. The request
buffer table can be of different sizes. We will discuss the impact of buffer size in §4.5.2. The
execution scheduler decides which request is ready for execution and can dispatch instructions
out-of-order. The scheduling logic prioritizes older requests when multiple requests are ready to
be dispatched.

The request buffer table also caches recent results until new requests take the entries. Zipper
hardware then reconstructs the data dependency chain based on the information embedded in the
requests. For each accelerator instruction, if its operand values have not been fully resolved, Zipper
will fetch their values based on the information provided in the request. 2 If the operand is in
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Figure 4.6: Issuing new request to accelerator

the memory, Zipper will issue a read request to the memory controller and mark it as ”in fetch”
to avoid duplicated read requests. If the value of the operand comes from a prior request, Zipper
will either fetch the value if it is ready in the buffer table or wait until the prior request has been
completed. 4 Once all operands have been resolved, we will mark this request as ready to be
dispatched. 5 When the computation is done, Zipper will store the results back in the buffer table
and write the results into their corresponding write-back address in the memory, shown in 7 . 6
If there are pending requests whose inputs are dependent on the newly completed request, Zipper
will directly forward the value when the result has been written into the buffer table.

Due to memory coalescing, updated and stale data can be packed into one cache line. Zipper
hardware checks the freshness of each operand in the cache line and opportunistically fetches them
into the request buffer table based on the version number. §4.3.6 will provide more details.

4.3.4 Latency-Tolerant Accelerator Interface

In Zipper, providing a non-blocking host-side interface that tolerates multiple pending requests
within the accelerator’s resource limitation is essential.

On the host side, Zipper conducts dependency analysis, request scheduling, and result fetching
in software with a runtime library. Zipper provides well-packaged data classes to host applications
as if they were host-native types. These data classes encapsulate overridden functions and neces-
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Figure 4.9: Fetching results from accelerator

sary metadata. This approach also provides flexibility and dynamic scheduling capabilities without
compiler modification. Figures 4.6, 4.7, 4.8, and 4.9 show Zipper’s software data structures and
corresponding updates when performing different functions.

The Zipper runtime library maintains two data structures to track data objects and communicate
with the accelerator: class objects and result lists. To track the status of accelerator results, Zipper
captures the following information into data objects:

• value: The value of the result if it has been fetched from the shared memory to the host
memory.

• valid: A Boolean type marks whether the value is ready to use or if we need to access
shared memory for results.

• inAccl: A Boolean type indicates whether this result is present in the Zipper buffer table.
This is useful when the runtime library explores opportunities for reuse.

• location: If the result is present in the buffer table or shared memory, Zipper needs to track
its location precisely.

The result lists track all the software data objects associated with each hardware-side buffer
table entry. Whenever Zipper fetches results from the accelerator or clears a table entry for a new
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request, we iterate through the list and update all relevant data objects. In this way, Zipper can
track multiple in-flight requests.

We will use a snippet of code shown in the figure to demonstrate the operation of the Zipper
runtime library and its non-blocking nature. In this code snippet, we first calculate an accelerator
request and its result, a, using inputs from the host, and then calculate another variable, b, reusing
a’s value. After these two accelerator requests, we reassign b to a. Lastly, we fetch a’s value from
the accelerator and return it to the host.

4.3.4.1 Issuing New Request

Figure 4.6 shows the procedures when Zipper issues a new accelerator request to the accelerator.
1 Within the context shown in the figure, Zipper checks the result lists and finds slot number 3

is available, so Zipper registers object a into slot number 3 as object a’s value is mapped to the
result at this location. 2 Since input operands m and n are not present in the accelerator buffer,
Zipper will store them in the shared memory and send their relative location in the shared memory
as part of the request to the accelerator. In the last step 4 , Zipper updates a’s validity as false
and marks it to be inside the accelerator at location 3. After this step, Zipper does not wait for a’s
value to be ready; instead, it continues to the next host instruction.

4.3.4.2 Object Reassignment

When reassigning an object to track another object, as in Figure 4.8, Zipper changes the data
structure to reflect this reassignment. In the figure, we reassign b to variable a. 1 Zipper copies
a’s metadata to b and moves b away from its original slot in the result lists to the same slot as a.
Similarly, Zipper removes the object from the result list when the object is deleted. The host can
proceed without stalling since Zipper does not fetch a’s value.

4.3.4.3 Lazy Fetch

Zipper never proactively makes memory access to fetch results until they are needed, and this
strategy is called Lazy Fetch. As we continue the execution of the code, the host eventually asks
for the value of a to proceed, shown in Figure 4.9. In this case, Zipper fetches a’s result from its
tracking location 3. If the result is not ready, the host will stall because it cannot continue execution
without it. Once Zipper fetches the value from the shared memory, it will update a’s value and its
metadata to set valid bit as true. Zipper will also update all objects that track location 3. However,
a’s value is still in the accelerator buffer as no new request evicts a yet, so we keep inAccl as true
and keep tracking a’s location in the hardware buffer table.
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4.3.4.4 Overloading Host Operators

In Zipper, host operators that involve accelerator-computed variables are overloaded in the runtime
library. When the host calls overloaded operators, dependency and status checks are invoked, and
the host will fetch the result from shared memory if it has not already been retrieved. Algorithm
4.3 shows an example of a host-native addition with an accelerator-computed result as one of its
input operands.

4.3.5 Enable Accelerator-Side Caching

While the Zipper hardware caches recent request results upon compute completion, it lacks the
execution context to utilize the data efficiently. Data dependency information has to be shared by
the host. We use the following example to show that Zipper detects temporal locality and issues
requests instructing the accelerator to reuse data in the buffer.

In Figure 4.7, Zipper needs to make another accelerator request. However, there are two major
differences from the last request issued: 1. There is no empty table entry available in the hardware.
2. One of its input operands, a, is the result of a prior request. To make space for this new request,
Zipper first clears the oldest entry as shown in Step 0 . Zipper forces each object mapped to slot
1 to fetch its value to host memory if it has not already, and updates it as it is no longer in the
accelerator’s buffer. During the analysis stage, Zipper detects that variable a is at location 3 of
the accelerator buffer, so Zipper will not write a to shared memory and does not need to fetch a’s
value back. Instead, Zipper constructs the request to inform the hardware that it should get a’s
value directly from buffer table slot 3. In this way, Zipper detects the relocation opportunities on
the host and utilizes the hardware buffer to exploit them. We then append b to the result lists and
update its metadata similar to what we did to a in the last request. Algorithm 4.2 summarizes the
procedures to send a new request to the accelerator.

4.3.6 Exploiting Memory Coalescing

For typical instruction-level workloads, input operands are usually smaller than 64 bytes. This
leaves another optimization opportunity. To reduce the number of memory accesses, Zipper packs
multiple operands for different requests into a single cache line. When the accelerator reads a
cache line from memory, it may contain multiple operands. These operands may be inputs for
accelerator requests that Zipper receives after the memory read request is issued. Since a race
condition exists between the host write and the accelerator read, and the ordering between the
two events is uncertain, Zipper attaches a version bit to each operand. The Zipper runtime library
flips the version bit every time it recycles the same operand slot. The Zipper accelerator verifies
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Data: A list of n input objects Ops and Instruction inst
Result: An Object r that tracks the result
r.valid← false

r.inAccl← true

r.location← NextSlot++
if ResultLists[NextSlot].Occupied then

for ob j← ResultLists[NextSlot] do
ob j.FetchResult

end
end
Request req
req.inst← inst
for i← (0→ n−1) do

if Ops[i].inAccl then
req.Ops[i].mode← BUF T BL
req.Ops[i].location← Ops[i].location

end
else

req.Ops[i].mode←MEM
req.Ops[i].location← NextMemOperandSlot
NextMemOperandSlot← (NextMemOperandSlot +1)%MaxNumO f Slots

end
end
send req
return r

Program 4.2: Procedures to issue new requests in Zipper runtime library.

Data: A host-native variable a and an accelerator-involved variable b
Result: The host-native addition of the input operands
if !b.valid then

for ob j← ResultLists[b.location] do
ob j.FetchResult

end
end
return a+b.val

Program 4.3: Overloading of host-native addition for accelerator-computed variables.
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Table 4.1: System Configuration

Host CPU Intel Xeon CPUs (E5-2699v4)
Host Frequency 2.2 GHz

FPGA Type Arria10 GX1150
Interconnection QPI
Bus Interface CCI-P

the freshness of the operand by matching the version bit with the version bit it receives from the
runtime library. It only fetches fresh values; otherwise, it issues a new read request to the shared
memory to fetch the input operands.

4.4 Evaluation

To evaluate the performance of Zipper, we evaluated two applications, each of which is a represen-
tative example of the use cases discussed in §2.4.

In the first application, we replaced the floating point representation in the C++-ported The NAS
Parallel Benchmarks (NPB) [35] with a Posit32 number representation. Posit is a number format
that achieves better precision than floating points but currently lacks native hardware support. All
the Posit number computations are computed with a hardware compute kernel. Each operand and
result is 32 bits in size.

In the second application, we implemented hardware isolation support for the integer subset of
VIP-Bench [24]. VIP-Bench is a set of algorithms implemented in a data-oblivious manner where
only the SE hardware enclave can see the plaintext values of the secrets. We prototyped the SE
enclave on an FPGA, and all privacy-enhanced operators are offloaded to the SE enclave. In this
application, every value is encrypted under a 128-bit Advanced Encryption Standard (AES) key;
thus, all operands and results are 128 bits in size. VIPBench and NPB represent interesting appli-
cations in privacy and High-Performance Computing (HPC) domains, which are gaining traction
and benefit greatly from fine-grained offloading.

4.4.1 Experiment Setup

We conducted our experiments on Intel HARPv2 [41] with an in-package FPGA. The detailed con-
figuration is shown in Table 4.1. CPU core and FPGA are connected with QPI [72] and CCI-P [74]
with a 64K FPGA-side coherent cache. The software code in the Zipper runtime library runs on
the CPU, and the Zipper-enabled compute kernel is synthesized and runs on the Arria10 FPGA.

We used an 8-entry buffer table design for the NPB Posit32 accelerator and a 2-entry design
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Table 4.2: Logic overhead of Zipper over the baseline accelerator design.

NPB w/ Posit VIP-Bench w/ SE
(8-entry) (2-entry)

Adaptive Logic Modules (ALM) 80,957 87,784
ALM Overhead 4.3% 0.9%

Registers 88,140 88,140
Registers Overhead 1.2% 0.3%

Block RAM (BRAM) 277 275
BRAM Overhead 0% 0%

DSP Blocks 6 6
DSP Blocks Overhead 0% 0%

for the VIP-Bench benchmarks running on the SE enclave design. We will elaborate on the buffer
entry choice in §4.5.2. The baseline implementation is an unoptimized design where each request
is issued and executed sequentially.

4.4.2 Performance Speedup and Logic Overhead

Figure 4.10 shows the relative performance of Zipper over the baseline design. On average, Zipper
provides 8x speedup for NPB with Posit32 and 1.5x speedup for VIP-Bench with the SE enclave.

We synthesized our design using Intel Quartus Pro Version 16.0.0.211 onto the targeted FPGA
platform. Table 4.2 summarizes the number of ALM and Registers used by Zipper compared to the
baseline design. The logic overhead of Zipper optimizations is only 4.3% for the 8-entry Zipper
Posit32 design over the baseline Posit32 design and 0.9% for the 2-entry Zipper SE enclave design
over the baseline SE enclave design.

4.5 Discussion

This section provides an in-depth discussion of the impact of various optimizations, request buffer
table sizes, workload profiles, and other relevant design aspects.

4.5.1 Accelerator Memory Access

Zipper’s performance benefits greatly from reducing accelerator memory demands by exploiting
temporal locality and memory coalescing. Figure 4.11 shows the percentage of the bus transactions
Zipper and other de-featured design options make over the baseline design.
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Figure 4.10: Relative performance of Zipper and various de-featured Zipper over the baseline.
Note that RLP does not exploit locality.
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Figure 4.11: Comparison of the number of bus transactions by accelerator between Zipper, de-
featured Zipper, and the baseline.
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1 2 3 4 5 6 7-19 20/+
bt 27% 3% 2% 1% 2% 1% 4% 36%
cg 26% 24% 0% 0% 0% 0% 0% 48%
lu 30% 5% 2% 2% 1% 1% 7% 31%
ft 25% 0% 8% 0% 0% 0% 0% 50%

mg 33% 1% 3% 0% 0% 0% 3% 47%
Average 28% 7% 3% 1% 1% 0% 3% 42%

bubble-sort 25% 25% 12% 0% 0% 0% 0% 37%
distinctness 29% 0% 14% 0% 0% 0% 0% 0%

gcd-list 22% 11% 11% 11% 0% 0% 0% 0%
kadane 27% 13% 7% 13% 0% 13% 0% 0%

knapsack 29% 0% 14% 0% 0% 0% 0% 14%
mersenne 35% 6% 6% 3% 3% 0% 0% 9%
minspan 20% 10% 0% 5% 0% 5% 0% 30%

shortest-path 22% 11% 0% 0% 0% 0% 2% 64%
set-intersect 20% 20% 0% 0% 0% 0% 0% 0%

tea-cipher 32% 3% 12% 6% 9% 0% 11% 0%

Average 26% 10% 8% 4% 1% 2% 1% 15%

NPB 

with 

Posit 

VIP-

Bench 

with SE 

Enclave

Figure 4.12: Distribution of distance between accelerator request result and operand reuse.

# of Buffer 
Table Entries 2 4 8

bt 1.88 3.52 6.54
cg 2.00 4.00 6.13
ft 1.99 3.99 7.67
lu 1.77 3.02 5.21

mg 1.81 3.14 5.31
Average 1.89 3.53 6.17

bubble_sort 1.67 1.00 1.00
distinctness 1.67 2.33 3.67

gcd-list 2.00 3.00 4.69
kadane 1.83 2.33 1.83

knapsack 2.00 3.66 6.32
mersenne 1.81 2.86 4.48
minspan 2.00 3.32 4.65

shortest-path 1.99 2.95 4.85
set-intersect 2.00 3.00 5.00

tea-cipher 1.70 2.41 2.89
Average 1.87 2.69 3.94

NPB 
with 
Posit 

VIP-
Bench 

with SE 
Enclave

Figure 4.13: Request-level parallelism with 2/4/8 buffer entries.

70



# of Buffer Table 
Entries 0 2 4 8

bt 100% 47% 38% 31%
cg 100% 50% 3% 2%
ft 100% 50% 33% 33%
lu 100% 43% 30% 21%
mg 100% 34% 27% 21%

Average 100% 45% 26% 22%
bubble_sort 100% 100% 33% 33%
distinctness 100% 33% 0% 0%
gcd-list 100% 50% 33% 0%
kadane 100% 83% 50% 0%
knapsack 100% 33% 0% 0%
mersenne 100% 44% 19% 6%
minspan 100% 67% 22% 22%

shortest-path 100% 50% 25% 25%
set-intersect 100% 50% 0% 0%
tea-cipher 100% 41% 29% 17%
Average 100% 55% 21% 10%

0% represents a non-zero but negligible number.

NPB 
with 
Posit 

VIP-
Bench 

with SE 
Enclave

Figure 4.14: Percentage of request results to fetch back to the host.

# of Buffer Table 
Entries 0 2 4 8

bt 0.001 157.46 204.83 218.16
cg 3.731 7.20 134.91 157.22
ft 1181.5 2315.8 3547.5 3347.3
lu 0.001 28.79 42.31 54.72

mg 74.078 208.72 274.06 328.12
Average 251.86 543.59 840.71 821.11

bubble_sort 42.11 42.42 128.11 133.17
distinctness 0.04 0.08 0.02 0.02

gcd-list 0.03 0.07 0.10 8.99
kadane 0.08 0.11 0.17 10.58

knapsack 2.74 8.16 2195 2197.8
mersenne 562.10 1235.4 2926 8775
minspan 4.18 6.00 18.45 19.30

shortest-path 33.31 66.79 135.46 130.89
set-intersect 5.27 10.74 11166 11161

tea-cipher 0.10 0.07 0.14 0.36
Average 65.00 136.98 1656.9 2243.7

VIP-
Bench 

with SE 
Enclave

NPB 
with 
Posit 

Figure 4.15: Timing distance (microseconds) between host request issue and fetch.
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For NPB with Posit32, Zipper reduces the accelerator’s bus transactions by 77% from the base-
line design. RLP enables out-of-order execution but does not reduce any memory access. Since
each operand is 32-bit in size and, with metadata, we can pack eight operands into one cache line.
As a result, memory coalescing reduces 63% of bus transactions over the baseline design. Depen-
dency relocation exploits temporal locality and data reuse, reducing 34% of bus transactions over
the baseline Posit32 design.

Since operands are much larger in the VIP-Bench with SE enclave design, we cannot pack the
operands as tightly as with Posit32 numbers. Therefore, it is more likely that the operands for
the same request span two cache lines, which leads to more memory access, and there are fewer
opportunities for memory coalescing in this workload. Zipper reduces 46% of the bus transactions
while memory coalescing and dependency relocation reduce 37% and 27% of the bus transactions
over the baseline SE enclave design, respectively.

It is worth noting that memory coalescing and dependency relocation are not necessarily com-
patible, especially when only few operands can be packed into a single cache line. Dependency
relocation can impact data alignment, leading to increased memory access, as we observed in
Mersenne and tea-cipher.

4.5.2 Size of the Reuse Window and Performance Impact

To study how many entries we need to provide in Zipper for different workloads, we analyzed the
distance of the data dependency chain in Zipper requests and the number of entries required for ef-
ficient dependency relocation. Figure 4.12 shows the percentage distribution of reuse distance over
the number of all request operands. We classify distances of 19 requests or fewer as exploitable
temporal locality. Our experiment results show that 91% and 92% of the temporal locality can be
captured with only four buffer entries for two workloads, respectively. We further profile more
aspects of the applications under different numbers of buffer entries as discussed in §4.2. Figure
4.13 shows the number of requests that can be processed in parallel within the different sizes of
instruction windows, assuming any dependency on the result before the start of the window under
study has been resolved. As we increase the number of buffer entries, Zipper can exploit more par-
allelism, but faces diminishing returns. Figure 4.14 shows the percentage of results required to be
fetched back into the host memory. Figure 4.15 shows the average time distance (in microseconds)
between the host issuing a request and the hosting using the request result. As Zipper harvests
more operand reuse with larger buffers, the percentage of results that need to be fetched decreases
as more request dependencies get relocated. The average time distance also increases as fewer
results are fetched back to the host, giving the host more time to execute host-side codes in paral-
lel. Note that this analysis assumes the system has perfect knowledge of instruction dependencies
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during runtime. In practice, Zipper always fetches results back when the buffer entry gets recycled
to ensure functional correctness. A larger buffer gives the host more time to continue execution
until it needs to recycle a buffer entry. However, the results shown in Figures 4.14 and 4.15 are
still significant, as they suggest potential acceleration opportunities.

We then analyzed the performance and logic overhead of various sizes. We construct our ex-
periments around the buffer size of 4. The results are shown in Figure 4.16. The logic overhead
increases exponentially as the buffer size increases because we need more logic for scheduling and
more space to store results and operands.

Interestingly, Zipper for NPB with Posit32 and VIP-Bench with SE Enclave manifest distinct
performance characteristics. For NPB with Posit32, the speedup increases logarithmically as we
put more entries in the buffer table. However, VIP-Bench with SE Enclave’s performance only
increases slightly with more buffer entries. The difference is attributed to the latency of each
compute kernel. The Posit32 kernel takes two cycles to complete an instruction while SE Enclave
kernel takes 24 cycles for each instruction. The SE Enclave is more compute-bound on the kernel
itself.

4.5.3 Impact of Different Optimizations

With insights into memory access and the impact of buffer size, we can better understand how dif-
ferent optimizations affect the overall performance of other applications. Since each optimization
requires engineering effort to implement, a breakdown can help developers further understand the
benefits of each design decision and make more cost-effective choices.

Request-level parallelism does not affect the memory access and offers 1.4x-1.6x speedup by
having the host issue multiple requests to the accelerator in parallel. Meanwhile, dependency
relocation provides significant performance improvement through exploiting temporal locality to
reduce the number of memory accesses. Small kernels would benefit more from these two opti-
mizations. The benefit diminishes for larger kernels, where each instruction takes more time to
compute. This is because the workload becomes compute-bound and blocks execution, leading to
request serialization.

Memory coalescing works well for compute kernels with smaller input operands, as it allows
us to pack multiple operands into a single cache line. It contributes to the compound effect with
request-level parallelism and dependency relocation, as Zipper can serve more requests with a
single memory access. For larger operands, alignment will play a role in determining the benefit
that Zipper can eventually extract.

Although Zipper exploits the program’s innate features, in practice, optimizations are limited
to a single scheduling window. As a result, moving the request locations would affect device-level
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Figure 4.16: Impact of different numbers of buffer table entries on performance and area for Zipper.
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parallelism but not request-level parallelism, memory coalescing, or locality. Switching request
orders would affect all aspects of the system.

4.5.4 Support for Multi-tenant Time Sharing

In an actual deployment, an accelerator may be shared by multiple hosts in a time-shared manner.
In Zipper, there could be false dependencies if the switch between different tenants is not handled
correctly. In the very likely case that tenants do not share the same memory space in communi-
cation with the accelerator, there is no danger of data dropping. However, the accelerator needs
to complete all the requests from the previous tenant before changing to the new memory space.
When the new tenant initiates requests, it must assume all data in the accelerator buffer is stale
and send input operands through the memory. Suppose two tenants share the same memory space.
In that case, Zipper fetches results back on behalf of the previous tenant before relinquishing the
buffer entry to the new tenant and factors in tenant information when calculating value reusability.

4.5.5 Comparison to the Model Projected Performance

While Zipper optimizes away significant communication overhead, Zipper still has to fetch results
back to the host to ensure correctness. This overhead can only be optimized if the program has no
runtime branches and jumps. After factoring in all factors, the model projects that Zipper will speed
up NPB with Posit and VIPBench with SE by 12.1x and 4.3x, respectively. We can achieve 8x and
1.5x in the actual deployment for these two applications. Besides the fact that SE is bounded
by the compute, as discussed above, we identified that software overhead and API inefficiency
are two other significant factors that prevent us from achieving the full potential. For SE, data
movement also takes more time because it uses larger data types, which is harder to overcome
without a wider bus to compensate. Access to lower-level APIs and hardware optimizations would
help Zipper further improve the speedup.

4.5.6 Comparison to Address-Indexed Cache and Integrated Registers

Other solutions to exploit temporal locality include address-indexed caching, such as in [139, 160,
138], and integrated register files in the accelerator, such as in [120, 62, 133].

Address-indexed caching deploys coherent storage for the shared memory space, providing fast
access to recently used data. Note that the platform used for the experiment baseline already in-
cludes a 64KB coherent cache maintained by CCI-P on the FPGA side [3]. However, the cache fails
to capture locality due to a lack of support for properly tracking request completion, controlling
data movement, and managing value dependencies. Even with sufficient tracking and scheduling,
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caching can only optimize memory access latency, while Zipper removes some memory access
entirely.

Integrated register files provide fast temporary storage within the accelerator pipeline and rely
on explicit Load and Store instructions to manage values in the registers.

Both approaches induce significant design complexity. Integrated register files even require in-
trusive modifications to user designs. More importantly, existing systems lack software and com-
piler support on the host side to manage data dependencies between two separate compute domains
automatically. Moreover, many vendors limit access to their accelerators and FPGA state by forc-
ing all interactions through a high-level API. This software interface approach creates significant
hurdles for integrating compiler support.

In comparison, Zipper can exploit request and device-level parallelism that existing solutions
cannot due to its reduced demands on system software and the compiler. Furthermore, Zipper has
the following advantages in system deployments:

• Platform-Agnostic: Zipper works for any platform regardless of underlying communication
protocols and other architectural supports. The acceleration opportunities Zipper exploits are
self-contained within the workloads.

• Portability: Zipper software is implemented as runtime libraries that can be easily reconfig-
ured, recompiled, and linked to different applications and machines, which provides excel-
lent portability.

• Extensibility: Zipper can be easily extended to support more devices, optimized scheduling
algorithms, and instruction sets by simply updating the library file. This is more approach-
able than extending compiler support.

4.6 Limitations

While Zipper demonstrates tremendous performance improvement over the baseline, there are
additional improvements we can explore as the continuation of this line of work.

Request Reordering: Zipper leverages the optimization opportunities that applications present.
However, there would be more temporal locality by reordering the requests and exploiting operator
commutativity and associativity. To achieve this, Zipper can create and maintain a request buffer
on the software end and issue requests in batches after optimizing requests within a scheduling
window.

More Accurate Analytic Model: The Zipper model helps identify optimization opportunities
when assuming program statistics are even out for the whole program. A dynamic and epoch-based
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model would be more insightful for developers to balance trade-offs across different system setups
and application behaviors. We must quantitatively formulate correlations between workload fea-
tures, platform parameters, and performance gain to project the performance benefits. More pow-
erful frameworks would be necessary to profile workloads, hardware platforms, and the accelerator
design in more detail.

Simulation Framework: While an analytic model can be helpful, simulation can provide more
accurate performance predictions. Complete profiling and simulation tools are essential to study
other use cases further.

Multi-Agent Cooperation: We considered the scenario with only one accelerator in this work.
Multiple accelerators can cooperate to complete the computation in a more complex system. Zipper
poses well to enable such extensions that the developer can use optimized scheduling algorithms
to dispatch requests to different accelerators.

4.7 Chapter Summary

In conclusion, this chapter identifies opportunities for optimization to tolerate latency in high-
performance data buses. By relocating data dependencies, heterogeneous systems can exploit
parallelism and temporal locality to improve performance. We introduced an analytical model
to evaluate the performance of applications that rely on instruction-level acceleration. We further
proposed Zipper, a protocol optimization layer that extracts the performance from the system by
capitalizing on temporal locality and parallelism. Zipper uses runtime library support for dynamic
scheduling and an additional hardware structure to execute requests from the host. Deployed on
Intel’s HARPv2 platform, Zipper achieves a 1.5x-8x speedup with low logic overhead for the two
case studies included in this dissertation.
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CHAPTER 5

Efficiently Allocating Communication Resources in
Heterogeneous Systems

5.1 Introduction

As Moore’s Law [112] and Dennard Scaling [46] have been withering over the past decade, sys-
tem designers have increasingly turned to heterogeneous designs to achieve an optimal balance of
cost, power, and performance. Unlike the homogeneous systems of the past, heterogeneous sys-
tems integrate diverse components that work together to maximize system-level efficiency. ARM’s
big.LITTLE architecture [16] exemplifies this design philosophy, with similar approaches subse-
quently adopted by AMD and Intel [38, 76].

While these heterogeneous components execute their respective workloads independently, they
typically share the same network and memory subsystems—i.e., interconnects, and memory de-
vices. Each component’s bandwidth and memory demands fluctuate dynamically with workload
characteristics, making shared resource pools more cost-effective than dedicating separate mem-
ory devices to each component. However, efficiently allocating these shared resources to maxi-
mize system performance remains a significant challenge. Poor allocation can lead to considerable
memory access delays and degraded performance, as shown in prior work [58, 49, 29, 43].

With the emergence of chiplet technology [122] and CXL [64], system designers now have the
flexibility to assemble systems from heterogeneous components sourced from multiple vendors,
tailoring configurations to specific workloads. This chapter focuses on optimizing the allocation
and regulation of interconnect and memory access, arguably the most critical shared resources,
for heterogeneous systems assembled through chiplet and/or CXL technology. These systems in-
troduce unique challenges: the system topology remains undefined during hardware design and
manufacturing, and component performance characteristics can vary significantly from one con-
figuration to another. Further complicating matters, individual components may be agnostic to the
system’s topology and unaware of other coexisting elements, thus lacking the global perspective
necessary for system-wide optimization.
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Existing solutions fall short when applied to such highly reconfigurable heterogeneous sys-
tems. While modern interconnect designs support static bandwidth allocation or traffic prioriti-
zation, they fail to account for broader system-wide implications. Software-based solutions can
dynamically adjust bandwidth but rely on centralized control nodes that must be reprogrammed
to support new topologies and participating agents, which introduces engineering overhead and
limits scalability. Hybrid solutions like Intel Memory Bandwidth Allocation (MBA) [40] and so-
lutions built on top of it, i.e., EMBA [161], rely on features supported by a specific architecture
from a particular vendor and are neither extensible to heterogeneous components nor scalable to
support large-scale clusters. Resource partitioning works, like [31, 32, 167, 30], leverage online
learning and/or machine learning models to perform space search for optimal partitions of memory
bandwidth. Still, all of them fall back on Intel MBA as the sole actuator and enforcer of partition
policies and thus do not cater to heterogeneous hardware systems.

To address these limitations, we propose Overpass, a flexible interconnect architecture de-
signed to optimize performance in heterogeneous systems. An Overpass Interconnect comprises
multiple Overpass router nodes that can be connected into arbitrary topologies. Each node au-
tonomously profiles runtime performance without prior knowledge and then adjusts upstream
bandwidth allocation based on optimal performance combinations over recent time intervals. Over-
pass decentralizes bandwidth allocation and memory arbitration decisions, distributing them across
router nodes. Each node communicates only with its neighbors and uses this localized information
to solve a bounded knapsack problem [25], determining an optimal bandwidth allocation strategy.
Bandwidth allocations are then enforced through a novel debt-opportunistic credit-based arbitra-
tion mechanism that regulates access priorities for connected agents and neighboring nodes. Col-
lectively, the router nodes form a scalable interconnect system that manages traffic and memory
access at each hop without relying on a centralized controller. Additionally, Overpass can dy-
namically throttle agent-side prefetchers based on observed traffic patterns, preventing bandwidth
over-consumption.

Traditionally, system-level performance monitoring and bandwidth regulation have been han-
dled by a centralized ”supervisor” node. However, in the emerging paradigm enabled by chiplets
and CXL, the interconnect becomes the only hardware component with visibility into all system
components and the contextual knowledge needed for fine-grained bandwidth control. Overpass
is the first interconnect architecture designed specifically for this paradigm shift.

We evaluate Overpass in a system of 8 compute agents interconnected via Universal Chiplet In-
terconnect Express (UCIe) and sharing a single memory device through CXL. Each agent contin-
uously performs General Matrix Multiply (GEMM) using Single CPU Core Matrix Multiplication
Benchmarks (MMPerf) [110]. Our experimental environment is built using The Structural Simula-
tion Toolkit (SST) [131] and DRAMsim3 [97], both of which are extended with CXL capabilities.
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We measure the number of completed GEMM operations over 1.6 milliseconds following a 400-
microsecond warm-up, totaling 2 milliseconds of execution. Results show that Overpass delivers
a 35% average system-level performance improvement over the best baseline arbitration mecha-
nism. Each Overpass router node introduces less than 3% area overhead relative to a baseline NoC
router design [14], which is negligible given that NoC typically occupies only around 8% of the
total system area in an 8-core design [92], with routers constituting just a part of that.

5.1.1 Chapter Organization

The remainder of the chapter is organized as follows: §5.2 describes the Overpass architecture and
its mechanisms for bandwidth allocation, traffic arbitration, and prefetcher throttling. §5.3 details
the experimental setup and presents evaluation results. Design optimizations and their performance
implications are discussed in §5.4. Limitations and future directions are presented in §5.5, followed
by the chapter summary in §5.6.

5.1.2 Chapter Contributions

This chapter makes the following contributions:

• studying current limitations of the existing works and the challenges to build a flexible inter-
connect for high-performance heterogeneous systems.

• proposing a composable interconnect design that optimizes memory traffic for heteroge-
neous systems. To the best of our knowledge, this is the first interconnect traffic manage-
ment mechanism based on a modular design that can form any topology without requiring
software intervention or significant hardware changes.

• presenting a novel debt-opportunistic credit-based arbitration mechanism that balances
crossbar utilization and bandwidth enforcement.

• evaluating Overpass’s performance benefits and area overheads with an eight-agent system.

• analyzing and comparing various Overpass setups and management strategies of Overpass.

5.2 Overpass Interconnect

Overpass Interconnect is a modular interconnect design that optimizes the overall system perfor-
mance by allocating and prioritizing communication bandwidth. Each router passes information
to neighboring nodes and implements local bandwidth allocation policies. When interconnected,
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Figure 5.1: Examples of Overpass Interconnects forming various topologies composed of Overpass
routers.

Overpass routers form a more extensive interconnect system that is flexible enough to create any
topology and regulate bandwidth for the entire system.

Overpass supports the following features:

1. Performance monitoring: Overpass does not require any a priori knowledge of the work-
load. Overpass collects the performance profile of each agent over time and updates it peri-
odically as agents proceed with the execution.

2. Bandwidth tracking and dynamic allocation: Overpass tracks the bandwidth usage at
the router level and adjusts the bandwidth allocated to each traffic direction accordingly.
Overpass’s dynamic bandwidth adjustment naturally adapts to any topology without any
node knowing the complete picture of the topology.

3. An efficient dynamic adaptive arbiter: To realize the bandwidth allocation policy set by
each router, Overpass employs a dynamic adaptive arbitration mechanism that combines
LRU tie-breaking with a credit-based scheme to decide traffic priorities. The arbitration
logic of Overpass is free of starvation and deadlock. The design is similar to SuDO [66] but
with improvements that address SuDO’s limitations, which will be detailed in §5.2.4.

4. Prefetch throttling: Overpass monitors the prefetching behaviors of each agent and node. If
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Table 5.1: Overpass commands and their usage across interfaces.

Command Description Data Fields Interface
REP PSCORE Report performance score perf score: uint 16 Agent-Overpass, Internal
ALLOC BW Allocate bandwidth new bw: uint 8 Internal
THRTL PF Throttle prefetcher timeout: uint 16 Agent-Overpass, Internal

RST PROFILE Reset profile N/A Agent-Overpass, Internal

the interconnect system is stressed, the router under stress can ask upstream nodes to throttle
the prefetching requests.

Each Overpass system is comprised of interconnected Overpass routers. Every Overpass router
acts independently based on the information the upstream and downstream nodes provide. This
autonomous and homogeneous design enables Overpass to be self-composing. Hence, it functions
optimally for any topology without re-programming the bandwidth management algorithm every
time the topology changes.

Figure 5.1 shows Overpass configured into four common topologies in the production environ-
ment. We will use them as examples as we describe each Overpass feature in detail in the rest of
this section.

Assumptions: We assume all compute agents in the system are in good faith and will report
their performance proactively and accurately. We assume Overpass Interconnect and the routers
in the network can collect device information and build routing tables during the device discovery
and setup phase with dynamic routing [107]. Furthermore, we assume application performance
monotonically increases with more bandwidth and access priority, a phenomenon observed in prior
work [145].

5.2.1 Overpass Interfaces

Overpass defines a small set of extensible commands to facilitate performance reporting, band-
width allocation, and prefetch throttling. Table 5.1 summarizes the commands and their use across
the Agent-Overpass and internal router interfaces.

Agent-Overpass Interface: The communication between agents and Overpass includes the
following:

• REP PSCORE: Agents self-report a 16-bit unsigned integer performance score. This score
reflects the agent’s performance during the last session window. The metric can be system-
defined—e.g., instructions per second, throughput, latency violations, or a composite score
of multiple metrics.
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• THRTL PF: When a router experiences congestion, it can issue this throttling signal up-
stream. The message includes a timeout (in microseconds) indicating how long the
prefetcher should remain throttled.

• RST PROFILE: When workloads or devices are swapped, the agent can ask Overpass to reset
its performance and bandwidth history using this command.

Internal Router Interface: Routers communicate among themselves using these commands:

• REP PSCORE: Routers propagate aggregated performance scores downstream to facilitate
bandwidth decisions.

• THRTL PF: Routers send or forward throttling requests to the upstream until they reach the
affected agents.

• ALLOC BW: Routers allocate bandwidth to in-flow directions based on the bandwidth deci-
sions. The decisions are sent to the upstream routers so they can use the allocated bandwidth
from the downstream routers as the new optimization target. The allocation is expressed as
8-bit multiples of a base unit defined by the system designer.

• RST PROFILE: Routers forward profile reset requests downstream to clear the history for
affected nodes. All nodes on the path from the resetting agent to the destination should have
their profiles reset, as outdated records may no longer reflect the agent’s updated behavior.

5.2.2 Overpass Router

As shown in Figure 5.2, an Overpass router extends a generic router design with three components:

1. Bandwidth Controller: Performs performance tracking and bandwidth adjustment.

2. Prefetch Throttling Manager: Detects and regulates prefetch traffic based on congestion
signals.

3. Dynamic Adaptive Arbiter: Regulates traffic priority using credit-based and LRU mecha-
nisms.

The bandwidth controller observes in-flow traffic to collect real-time usage and performance
metrics, bypassing standard buffers for control traffic. It adjusts bandwidth allocations accordingly
and informs upstream nodes. It also interacts with switch allocators to enforce updated priorities
until the next allocation round.
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Figure 5.2: High-level diagram of an Overpass router. Credit return paths are omitted. VC =
Virtual Channel, XBar = Crossbar.

The prefetch throttling manager filters THRTL PF messages from incoming ports and decides
which upstream nodes should receive the throttling signals. If the observed bandwidth exceeds a
configurable threshold, it proactively issues throttling signals upstream.

The dynamic adaptive arbitration logic implemented in Overpass routers will be detailed in
Section 5.2.4.

5.2.3 Bandwidth and Performance Information Management

Each Overpass router aggregates the performance scores from upstream nodes and forwards the
aggregate downstream. Based on this data, downstream routers then allocate bandwidth among
their upstream counterparts and propagate updated allocations back upstream.

Example: In the grid topology (Figure 5.1c), router 2 , closest to memory, first partitions
bandwidth among Agent A-0, node 0 , and node 3 . Nodes 0 and 3 further subdivide this
allocation to their respective upstream nodes. For instance, 0 allocates to A-1 and 1 , and 1
allocates entirely to A-2.

5.2.3.1 Cyclic Path and Double Counting Prevention

Overpass maintains a strict directional flow based on routing policies (e.g., in this case, X-Y or
Y-X). Performance scores are propagated along the static and preset routing path to the shared
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Figure 5.3: Overpass bandwidth allocation engine and information store. Bandwidth-performance
profiles are maintained per source-destination direction.

resource, preventing double-counting and ensuring acyclic dependency graphs. A router closer to
the shared resources, based on the routing algorithm, always regulates nodes further away.

5.2.3.2 Data Structure

As shown in Figure 5.3, each router maintains a table indexed by source-destination direction pairs.
Each entry stores:

• A flit counter that tracks the traffic in flits from one direction to another. This information
will be used to calculate bandwidth in the next bandwidth allocation update.

• A bandwidth-performance score array (BW-Perf Score Array) that tracks the recorded band-
width and its corresponding performance score over time. This information will be used to
optimize the system’s performance. The number of entries depends on the maximum physi-
cal bandwidth and the finest adjustment granularity supported by the router. Specifically, the
number of entries equals the maximum bandwidth divided by the adjustment granularity.

• A register that records the currently allocated bandwidth.

5.2.3.3 Performance Score Update

Routers receive performance reports from upstream nodes and associate them with observed band-
width usage in the most recent session. If multiple reports are received in a session, they are
averaged.
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5.2.3.4 Bandwidth Allocation Update

Overpass uses the performance score profiled as the proxy for system performance. Overpass
models bandwidth allocation problems as a bounded Knapsack problem with constraints, which
can be solved with integer linear programming. We set the overall capacity target as the maximum
physical bandwidth or the allocated bandwidth from the downstream node, whichever is lower.
We then constrain the bandwidth selection of each in-flow direction to the bandwidth currently
assigned BWc or one of the neighboring bandwidths (one basic unit more BWc +BWb or one basic
unit less BWc−BWb. BWb is the smallest unit that the router can adjust). The bandwidth allocated
to each direction should be at least BWb and no more than the physical bandwidth limit BWmax.
This constraint is implemented to reduce compute overhead and make more gradual adjustments
without drastic system disruption. The goal is to maximize the aggregated performance of all
upstream nodes and agents. We can formalize the problem as such:

Assume there are N in-flow directions and M out-flow directions. The downstream nodes pre-
determine the bandwidth of all out-flow directions as

BW j
dest , j ∈ {0,1, ..,M−1}

Similarly, the bandwidth of an in-flow direction to a particular out-flow direction can be annotated
as

BW i j, i ∈ {0,1, ...,N−1}, j ∈ {0,1, ..,M−1}

A lookup function F exists that translates a direction pair and its corresponding bandwidth into an
integer performance score. We annotate the performance score returned by the look-up as

PSi j
BWi j

= F(i, j, BWi j)

The knapsack problem with constraints for an out-flow direction j can be written as

max
N−1

∑
i=0

PSi j
BWi j

constrained by

N−1

∑
i=0

BW i j ≤ BW j
dest

BW i j ∈ {BW i j
c ,min{BW i j

c +BWb,BWmax},

max{BW i j
c −BWb,BWb}}
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For bandwidth allocation updates, each direction starts with evenly allocated bandwidth. The
update is run every preconfigured time T or after Overpass receives a new bandwidth allocation
request from downstream nodes. If a neighboring bandwidth’s performance score is unknown,
we will add a slight bonus to the current performance score to encourage the system to explore
new bandwidth options. The bonus is a configurable parameter of Overpass and can be tuned to
larger for a more aggressive adjustment or smaller for a more conservative adjustment. As a rule of
thumb, if the observed bandwidth is less than the allocated bandwidth, Overpass prefers allocating
less bandwidth during the update by adding a larger bonus to the smaller bandwidth option; if the
observed bandwidth is close to or above the allocated bandwidth, Overpass prefers allocating more
bandwidth.

5.2.4 Arbitration in Overpass Router

Overpass arbitration enforces dynamic bandwidth allocations while ensuring fairness and avoiding
starvation. It combines a credit-based scheme with LRU tie-breaking. Overpass arbiter is debt-
opportunistic because it allows the requesters to overdraw credits to maximize crossbar utilization,
contrary to the common practice of stalling access if the credit runs out.

Each requester receives credits proportional to its bandwidth allocation. Credits are tracked in
per-port counters and a shared main counter.

Arbitration: When multiple requests are active, the arbiter selects the one with the highest
credit (Figure 5.4a). If tied, LRU is used. Credits are decremented on flit transmission. Requesters
can overdraw credits (resulting in negative values) if they are the only active requester.

Refilling: When the main counter is exhausted, all counters are refilled based on the latest
bandwidth policy (Figure 5.4b). Refilling occurs every time the credits in the main counter run
out. The credits only reset when the current session ends and the bandwidth allocation is updated.
This allows flexible overdraw and deferred fairness enforcement: the requesters that start with
fewer credits will eventually get selected after the ones with more use up their credits.

Comparison to SuDO [66]: SuDO is an arbiter that uses a similar debt-opportunistic approach.
Overpass arbiter differs from SuDO in two ways: First, Overpass uses a main counter to control
the refill interval, whereas SuDO only refills when all per-port credits are used up. This helps
Overpass maintain relative priority when one or a few requesters hold off the refill and others
cut into debt. Second, Overpass arbiter uses LRU as the tie-breaker instead of RR, which avoids
starvation issues.
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Table 5.2: Specification of the simulated hardware system.

Component Name Description
CPU Core Ariel Core, max 4 Issue per cycle

Cache 512KB, 8-way associative
Prefetcher Stride prefetcher, detect range of 4

Die-to-die Latency 10ns
Off-chip Latency 50ns

Interconnect Frequency 1GHz
Memory Device 8 channel DDR4@3200MT/s

5.2.5 Prefetch Throttling

When bandwidth usage exceeds a configurable threshold, a router issues THRTL PF signals up-
stream with a timeout value. These signals propagate hop by hop until they reach agents, which
are instructed to reduce prefetch activity temporarily.

Though conceptually simple, this mechanism is highly effective under network stress (see §5.3).
Since the compute agent lacks global visibility, its reactive throttling may be suboptimal. Overpass
offers a proactive alternative by issuing throttling signals from points of congestion.

Note that not all agents support adjustable prefetchers. However, even without agent-side
prefetch throttling, Overpass still delivers significant performance gains through its adaptive band-
width management alone.

5.3 Evaluation

We evaluated Overpass using SST [131], a widely adopted environment for high-performance
system simulation, and DRAMsim3 [97] for modeling memory device behavior. We extended
SST with a CXL host engine, which translates memory requests into CXL messages, and a CXL
Device Coherency Agent (DCOH) to support shared memory across devices. The Overpass Router
was implemented atop SST’s high-radix generic router module.

5.3.1 Experiment Setup and Configurations

• Base system: Our simulated system consists of 8 CPU cores grouped into four compute
chiplets. These chiplets connect to a CXL-enabled DDR4 memory backend via a central
IO die. Each core-cache complex includes a CXL host engine, which translates memory
requests into CXL messages before they hit the interconnect system. ECore subsystems
operate independently, unaware of the broader system. Each core-cache complex has a stride
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Table 5.3: Experiment setup configurations.

Setup Name
(Letter Symbols)

Hardware Configurations(freq.) Workload Tiling Size Network
Maximum BandwidthDie0 Die1 Die2 Die3 Die0 Die1 Die2 Die3

Hardware Cascade
(HC-4/8)

Core0 1GHz 2GHz 2GHz 4GHz

16

4GB/s or 8GB/s

Core1 1GHz 2GHz 2GHz 4GHz
Hardware High-Low

(HHL-4/8)
Core0 1GHz 1GHz 4GHz 4GHz
Core1 1GHz 1GHz 4GHz 4GHz

Hardware Alternating
(HA-4/8)

Core0 1GHz 1GHz 1GHz 1GHz
Core1 4GHz 4GHz 4GHz 4GHz

Workload Cascade
(WC-4/8)

Core0

2 GHz

4 8 8 16
Core1 4 8 8 16

Workload High-Low
(WHL-4/8)

Core0 4 4 16 16
Core1 4 4 16 16

Workload Alternating
(WA-4/8)

Core0 4 4 4 4
Core1 16 16 16 16
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prefetcher, initialized to detect a range of 4, meaning a stride is identified if at least 4 blocks
are accessing the same stride. The detailed specification of the hardware system is listed in
Table 5.2.

• Workload: Each compute agent performs element-wise matrix multiplications similar to
MMPerf [110] consecutively. Each matrix multiplication is performed as C784×256 =

A784×512 × B512×256 with each element of type float, a typical dimension used in
ResNet [59]. The same computation with different tiling strategies [153] results in different
data reuse rates in cache and instruction counts per multiplication. We use 4, 8, and 16 tiling
sizes in our evaluation.

• System configurations: We evaluated Overpass in 12 different system configurations. Three
different hardware setups run the same workload but mix-and-match slow (1GHz), medium
(2GHz), and fast cores (4GHz), and three different workload setups that all cores run at
2GHz but with different tiling strategies. These six setups are given two network conditions:
constrained (4GB/s) and sufficient (8GB/s). The configurations are detailed in Table 5.3.

• Overpass configuration: The session interval was set to 100µs, with bandwidth adjust-
ment granularity at 100MB/s. We evaluated three variants of Overpass: defeatured Overpass
with bandwidth adjustment only, defeatured Overpass with prefetch throttling only, and full-
featured Overpass. When prefetch throttling is enabled, Overpass issues the throttling signal
with a 100µs timeout when the network is stressed. When the agents receive throttling sig-
nals, they increase the prefetcher detect range to 8, resulting in fewer prefetch requests. The
detection range returns to 4 after the timeout.

• Baseline and Performance Measurements: Performance is measured as GEMM opera-
tions per second across the 8-core system. Each run simulates 2ms of system time, with a
400µs warm-up phase. The results are compared against four baseline arbiters: RR, LRU,
age-based, and random. In this system, the age-based arbiter is effectively equivalent to the
LRU arbiter.

5.3.2 Performance Improvements

Figure 5.6 summarizes the performance gains of Overpass. Across 12 setups, baseline arbiter
effectiveness varies: round-robin performs best under bandwidth constraints, while LRU(AGE-
based) excels with ample bandwidth.

Overpass is compared to the best baseline design in each setup. The full-featured Overpass pro-
vides 35% performance improvement over the best baseline. Overpass can improve performance
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Table 5.4: Area comparison between baseline and Overpass router designs. The unit for area is
µm2.

5 ports
Category Baseline Overpass Overhead
Combinational 313,886.8 317,521.6 1.2%
Buf/Inv 19,912.9 20,865.2 4.8%
Non-combinational 10,579.7 12,572.2 18.8%
Total 324,466.5 330,093.8 1.7%

3 ports
Baseline Overpass Overhead

Combinational 117,964.6 120,040.4 1.8%
Buf/Inv 9,424.5 9,920.3 5.3%
Non-combinational 8,679.8 9,788.7 12.8%
Total 126,644.4 129,829.1 2.5%

by 11% with only dynamic bandwidth allocation and 17% with only prefetch throttling. Dynamic
bandwidth allocation will have a more considerable impact on the system performance in high sys-
tem bandwidth scenarios, providing 16.5% performance improvement for setups with a bandwidth
of 8GB/s compared to 5.5% improvement when the system has 4GB/s. Conversely, the prefetch
throttling impacts systems with constrained bandwidth more, bringing a geometric mean of 22.9%
performance improvement to 4GB/s setups and 11.5% improvement to systems with 8GB/s total
bandwidth.

5.3.3 Area Overhead

We implemented 3-port and 5-port Overpass routers in SystemVerilog, based on a baseline
network-on-chip design [14], with 8-entry buffers per port. Both Overpass and baseline designs
were synthesized using IBM’s 45nm standard cell library. Table 5.4 shows the Overpass router
overhead in each category. Overall, the area overhead is 1.7% for 5-port routers and 2.5% for 3-
port routers. The most significant increase in area is for non-combinational logic, which Overpass
uses to calculate bandwidth allocation, record credit, and update performance status.

5.4 Discussion

This section analyzes Overpass’s runtime behavior and highlights how different features contribute
to system performance. We explore the varying effectiveness of Overpass across configurations
and provide insights into its decision-making process.
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5.4.1 Predicting the Performance Score

Accurate performance prediction is key to effective bandwidth allocation. Figure 5.7 shows the
relative error between the estimated performance (after bandwidth adjustment) and the actual per-
formance observed in the subsequent session. Across all setups, the geometric mean of error
is 16%. When calculated cumulatively, where overestimations and underestimations cancel out,
Overpass exhibits a 3% net overestimation. This indicates that while system variations and noise
make short-term predictions difficult, Overpass’s prediction of long-term performance is reason-
ably accurate.

Bandwidth availability significantly impacts prediction accuracy. With limited bandwidth
(4GB/s), the average error rises to 28%, compared to just 5% when bandwidth is ample (8GB/s).
This explains why dynamic bandwidth allocation is more effective in high-bandwidth scenarios
and highlights the challenge of performance prediction in constrained environments.

Despite these inaccuracies, Overpass relies on relative—not absolute—performance rankings to
guide decisions. This allows Overpass to optimize system-wide performance even when prediction
precision is imperfect.

5.4.2 The Effectiveness of Bandwidth Allocation

To illustrate Overpass’s dynamic bandwidth allocation in action, we examine setup HC-8 with
only dynamic bandwidth allocation (without prefetch throttling). Figure 5.8 shows the bandwidth
taken by each die on the central I/O for every 100µs interval. In this setup, Overpass (without
prefetching throttling) improves the overall system performance by 23%. For this setup, die0 has
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two cores of 1GHz. die1 and die2 each has two cores of 2GHz, and die3 has two cores of 4GHz.
Ideally, we would like to serve the faster cores(die3) first so it can output more work and slightly
prefer die1 and die2’s traffic over die0 because die0 is the slowest die.

Table 5.5 shows the relative bandwidth allocation and performance change of Overpass com-
pared to the baseline (LRU) implementation. While the baseline prioritizes Die3, it lacks finer-
grained classification among the other dies. On the other hand, Overpass gives die3 and die2 more
bandwidth resources while depriving die1 and die0’s bandwidth usage. Even though die1 and die2
have the same configuration, Overpass would prefer one over the other, a behavior that will be
further discussed in §5.4.4.

5.4.3 Prefetch Throttling Reduces Memory Bandwidth Pressure and Mem-
ory Access Latency

Prefetch throttling proves especially effective in bandwidth-constrained systems where intercon-
nect congestion is a limiting factor. We analyze the setup HHL-4 to understand how reducing
prefetch activity leads to performance improvements.

As shown in Table 5.6, enabling prefetch throttling reduces I/O die usage by up to 56%. This
leads to a substantial drop in memory requests and a 39% reduction in average memory access
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Table 5.5: Relative bandwidth allocation and performance change of Overpass with only band-
width allocation over the baseline (LRU) implementation.

B/W Percentage
Change

Performance
Change

Absolute
B/W Usage

Die0(1GHz) -9.1% -19% -43%
Die1(2GHz) -7.6% -22% -60%
Die2(2GHz) +6.2% +47% +43%
Die3(3GHz) +10.5% +47% +30%

latency. These improvements reflect a more efficient memory subsystem and reduced stalling in
agent pipelines.

5.4.4 Exploiting Imbalance for Better Performance

As noted in §5.4.2, Overpass improves system throughput by favoring higher-performing agents,
often at the cost of fairness. Figure 5.9 illustrates this in WA-4 and WA-8 setups, comparing
per-core performance under Overpass (with and without throttling) against the best baseline.

Overpass accelerates some agents while throttling others. This imbalance maximizes system-
level throughput, as the gains of the prioritized agents outweigh the losses of the deprioritized
ones. This pattern recurs across multiple configurations, confirming that Overpass favors aggregate
performance over equal resource distribution.

Although Overpass may not be ideal for situations where balanced allocation is required across
the board, it is highly effective for performance-centric applications, such as AI inference and HPC
tasks, where maximizing throughput is the primary objective.

5.5 Limitations

While Overpass provides significant performance improvements with low area overhead, it comes
with limitations that await further studies.

• Parameter Selection: Overpass has many reconfigurable features, i.e. the bandwidth ad-
justment delta, the session length. Currently, it relies on the developers to decide the best
parameters that work for the system, and the optimal configuration often depends on the
topology and application performance profiles. More detailed studies are needed to uncover
the relationship between the parameters and the performance improvements of different se-
tups.
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Figure 5.9: Relative per-core performance of Overpass over the baseline with WA-4 and WA-8 setups. The dotted line indicates the best
baseline.
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Table 5.6: Memory usage comparison of baseline and Overpass configurations. Percentage changes are shown in parentheses.

Baseline Overpass W/ Only Prefetch Throttling
(Change Over Baseline)

Overpass
(Change Over Baseline)

B/W Usage on I/O die 97% 50% (-49%) 42% (-56%)

Mem. Read Requests 102741 58909( -43%) 62027 (-40%)

Mem. Time Per Cache Access (ns) 4.338 2.739 (-37%) 2.629 (-39%)
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• Handling program phase change and avoiding local optima: Overpass uses the past
performance-bandwidth observations to guide the future bandwidth allocations. This ap-
proach can be problematic for long-running applications with shifting performance phases,
as the historical data may become outdated. One option is to deploy an expiration time for
each data point. However, this presents a trade-off: if the data point expires too quickly,
Overpass lacks information to make good allocation decisions; if it is too late, Overpass
uses stale information to make decisions that might lead to Overpass being trapped in local
optima. The best expiration policy needs further study.

5.6 Chapter Summary

This chapter presents Overpass, a flexible interconnect design with distributed bandwidth alloca-
tion capabilities for heterogeneous systems. Overpass profiles the system performance dynami-
cally and allocates target bandwidth to different upstream nodes to achieve the best system-wide
performance. Overpass router enforces the bandwidth allocation with a dynamic adaptive arbiter,
prioritizing traffic and leading to improved work output. Overpass can also send signals to throttle
prefetching so the system can perform better. We evaluated Overpass with an eight-agent system
interconnected with five Overpass routers across 12 configurations that differed in hardware perfor-
mance, workload characteristics, or network bandwidth. The system performance is evaluated as
the operation throughput of ResNet-level matrix multiplications. Compared to the best-performing
unmoderated interconnect system, Overpass improves system performance by 35% while incurring
less than 3% area overhead. Overpass exploits imbalanced bandwidth distribution to maximize
system yield and throttles prefetch behaviors to prioritize on-demand memory access, improving
network efficiency. The results demonstrate that a composable interconnect system employing dis-
tributed resource allocation significantly enhances performance in scalable heterogeneous systems,
with minimal area and engineering overhead.
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CHAPTER 6

Related Works

As heterogeneous hardware systems gain traction, a wide range of research has emerged to address
the design, communication, and resource allocation challenges associated with them. This chapter
surveys key related works across these domains and critically compares them against the solutions
proposed in Chapters 3, 4, and 5. Specifically, we examine existing hardware design methodolo-
gies, host-accelerator communication optimizations, and shared resource management strategies,
highlighting where prior efforts succeed, where they fall short, and how this dissertation’s contri-
butions—Twine, Zipper, and Overpass—push the boundary of what is achievable in streamlining
heterogeneous system design.

In recent years, many hardware design languages have been proposed to improve design pro-
ductivity. Table 6.1 compares Twine with other popular hardware design languages on features
that help developers design heterogeneous systems.

Chisel [19] enables polymorphism in the hardware design workflow and provides the flexibility
to dynamically generate hardware designs. Chisel provides an optional pre-defined interface, e.g.,
Valid and Decoupled. However, the semantics of the pre-defined ports are not specified. Thus,
automating control coordination is a challenge. It also lacks the functionality to help developers
match the data format and queue the data in the presence of backpressure or out-of-order execution.

V++ [108] proposes using a compiler-generated communication channel with a multiple-writer-
single-reader model as a homogeneous communication mechanism. However, such an interface is
overly expensive for light modules, which leads to high and unnecessary performance, power, and
area overhead.

SpinalHDL [121] provides a stream module interface, which is similar to DecoupledIO. How-
ever, the communication behaviors are only well-defined between two modules and thus do not
support system-level elaboration. SpinalHDL does not provide queueing and data format adapting
capability for the stream module interface.

BaseJump Standard Template Library (STL) [149] provides a standard hardware module
library with templates but lacks system-level automation between modules.
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Table 6.1: Twine compared to other popular hardware design languages on features that help with heterogeneous design.
✓= fully supported; ✗= not supported; ✓–= partially supported.

Chisel w/ Twine SystemVerilog VHDL Chisel HDL Bluespec Verilog SpinalHDL V++ PyMTL MyHDL

Reusable Standard Interface ✓ ✗ ✗ ✓– ✓– ✓– ✓ ✗ ✗

Design Elaboration ✓ ✓– ✓– ✓ ✓– ✓ ✓– ✓ ✓

Component-level Semantics ✓ ✗ ✗ ✗ ✗ ✓– ✓ ✗ ✗

Built-in Queueing ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Built-in Control Coordination ✓ ✗ ✗ ✗ ✗ ✓– ✓– ✗ ✗

Built-in Data Formatting ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Built-in Serialization ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Easy Parameterization ✓ ✓– ✓– ✓ ✗ ✓ ✗ ✓ ✓
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Other hardware design languages are not designed to address the challenges that developers are
facing in heterogeneous design. PyMTL [102] and MyHDL [39] are two Python-based HDLs,
aiming to make hardware design more accessible by providing a Python frontend. However, they
offer comparable gate-level semantics to existing HDLs and lack crucial features for easy meta-
programming, which is fundamental for accessible heterogeneous design. Wire sorts [37] is de-
signed to verify the correctness of module interconnections.

In comparison, Twine provides multiple universal interfaces to meet design needs and offers
system-level solutions for large-scale, heterogeneous systems, rather than partial automation that
only works locally. Twine provides automation capabilities that are essential for quickly exploring
the design space.

While design automation addresses the productivity challenges at the early stages of hetero-
geneous system development, communication latency overheads between host and accelerators
become the next major bottleneck in deployment. We now shift focus to related efforts aimed at
mitigating communication latency and inefficiency, the context within which Zipper was devel-
oped.

Two main research directions specifically address the latency challenge: latency-reduction tech-
niques, which directly decrease communication costs, and latency-tolerant techniques that hide
communication latency to reduce overall system overhead.

For direct latency reduction techniques, improvements come from optimized bus transistor and
microarchitecture designs [103, 47, 7, 94, 158, 156, 157], protocol setups [64, 21], or data com-
pression and approximation schemes [51, 144, 125, 18, 99, 134].

Improved bus transistor and microarchitecture designs introduce new materials, arbiters,
and links into the system to reduce the point-to-point transmission delay of signals directly.

New bus protocols reduce communication delay for specific domains and use cases by reducing
or specializing packet headers and communication handshake packets.

Data compression and approximation schemes minimize communication overhead by letting
the system send fewer data over the data bus. These techniques are orthogonal to Zipper as Zipper
does not modify the data bus. Zipper exploits opportunities within the application’s semantics
and characteristics and would benefit from more efficient bus designs to further improve hardware
resource utilization.

As for latency-tolerant techniques, there are four major approaches: prefetching [13, 141, 27,
113, 123, 81, 109, 5, 9, 79], caching [142, 55, 123, 89, 127, 36, 139], multithreading [8, 155, 48,
143, 154, 132], and relocating [54, 86, 140, 101, 136, 70, 130].

Prefetching predicts the memory access pattern and issues memory access before the data is
used. This technique does not apply to the challenge tackled in this chapter because accelerator
requests often rely on host-side data-based control flow, making it hard to issue in advance.
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Caching keeps data closer to the compute by exploiting spatial and temporal locality. Compar-
isons between Zipper and common caching techniques have been extensively discussed in §4.5.6.
In summary, Zipper is more flexible and area-efficient than cache-based designs.

Multithreading hides access latency by allocating the hardware resources to another thread
while waiting for the long-latency operation to complete. However, its benefits diminish when
the operation is at or below the microsecond level due to context switch overhead. Moreover,
multithreading relies on having enough threads to schedule and focuses on the throughput. In
comparison, Zipper does not rely on switching to other work to occupy the host and significantly
speeds up the end-to-end latency.

Relocating (i.e., in-memory/near-memory computing) is a design philosophy that moves com-
pute closer to the data. For instruction-level acceleration, even if placed near the memory, the
system still needs to tolerate the latency between the host and the accelerator. Such a challenge is
not directly addressed by relocation as a result.

Zipper is complementary to works like UCNN[60], which exploit data locality and access pat-
terns of certain classes of algorithms. In comparison, Zipper is agnostic to algorithms because it
calculates data reuse, removes false dependencies, and exploits opportunities for parallelism during
runtime. Zipper can be used as a complementary tool to speed up solutions like UCNN further.

GPU Command Processor (GCP) [10] reads instructions from memory, schedules those in-
structions onto functional units, and maintains thread synchronization. Zipper’s hardware does
shoulder similar responsibilities as GCP, but Zipper’s novelty lies in its holistic approach to ex-
ploiting parallelism across multiple devices and takes advantage of data locality.

Overall, Zipper is flexible enough to support any algorithm and deploys a more systematic
approach to exploit optimization opportunities.

Although optimizing communication between hosts and accelerators can significantly boost
the performance of individual applications, heterogeneous systems must also efficiently manage
shared resources at the system level to avoid contention and interference. We now turn our attention
to related work in bandwidth allocation and interconnect design, positioning Overpass against these
solutions.

Existing interconnect management faces significant challenges in creating truly flexible and in-
terconnected heterogeneous systems. We compared the features of different network and memory
arbitration and allocation strategies in Table 6.2.

The most common arbiters used in the interconnect and memory allocators are the static ar-
biters, i.e., strict priority, RR [56], LRU [82], and age-based (AGE) [1]. While simple to imple-
ment, static arbiters ignore performance variances across different agents, thus becoming insuffi-
cient for system and workload heterogeneity and gradually marginalized in real-world designs.

Multiple dynamic adaptive arbiters [166, 96, 65], have been introduced to provide priority and
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Table 6.2: Comparison between Overpass and other existing solutions or proposed works. ✓–= Yes, but it takes considerable engineering
efforts.

Static Arbiters Adaptive Arbiters QoS Class Software Controllers Overpass
Optimize system-level performance ✗ ✓ ✗ ✓ ✓

Fine-grained dynamic adjustment ✗ ✗ ✗ ✓ ✓

No extra software ✓ ✗ ✓ ✗ ✓

No extra profiling process N/A ✗ ✗ ✓ ✓

Distributed (Scalable) N/A ✗ ✓ ✗ ✓

Arbitrarily composable ✓ ✗ ✓ ✓– ✓
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bandwidth control to shared resources while ensuring equality. However, these schemes only try to
impose a predetermined bandwidth allocation policy without considering the impact of allocation
on overall system performance, as pointed out in Ibarra-Delgado et al. [65]. Instead, the bandwidth
allocation decisions are deferred to other agents in the system.

QoS based solutions [69] categorize communication and requests into different classes and
serve them accordingly. QoS-based solutions rely on compute agents and sometimes applications
themselves to generate QoS priority in their requests. Under this approach, compute agents are
unaware of the system-level traffic and the performance status of their peers and thus cannot adjust
accordingly. In a bandwidth-constrained situation, agents may increase their QoS priority to secure
arbitration, leading to excessive resource contention and monopolization of network and memory
bandwidth, as observed in Jeong et al. [80].

Multiple software-based solutions [169, 170, 115, 4] have been proposed using system-level
algorithms to monitor traffic status from performance registers and throttle overused resources
through the operating system’s kernel layer. Like adaptive arbiters, software-based solutions rely
on prior knowledge of workload characteristics or predefined performance indicators for a par-
ticular workload. Such approaches require a master node and a system-level operating system
responsible for monitoring and regulating all other agents. While this might hold for SoC de-
signs, it becomes unrealistic for CXL-connected systems where each agent is opaque to any other
agents in the system. Furthermore, software solutions must be able to expect and adapt to different
topologies to generate optimal allocation policies, which is a considerable hurdle for deployment.

Intel’s MBA [40] provides developers with mechanisms to throttle application bandwidth us-
age. EMBA [161] leverages this capability to optimize system-wide performance. However, MBA-
based techniques regulate the request rate to the last-level cache—a feature unique to Intel CPU
core architectures, which inherently limits their applicability in heterogeneous systems. Addition-
ally, EMBA’s centralized control mechanism incurs a latency of at least 17 milliseconds and up to
800 milliseconds to adjust for the next scheduling interval on an eight-core system. In contrast,
Overpass does not rely on any agent-architecture-specific features and can respond within tens of
microseconds or even nanoseconds when required.

Several resource partitioning efforts of colocated workloads have been proposed in recent years.
[30, 31] formalize the problem as contextual multi-armed bandit problems and iteratively tune sys-
tem partition policies, while [32, 167] leverage machine learning models to estimate the results of
actions without actually interacting with the system and reduce the search space. However, all of
them remain algorithmic and lack the infrastructure and design to enforce the partition policy. All
of these solutions rely solely on Intel’s MBA capabilities for memory bandwidth enforcement and
thus do not address the challenges in the context of heterogeneous hardware. However, method-
ologies proposed in these works could be integrated with Overpass as the bandwidth allocation
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algorithm.
In summary, while existing works have made significant strides in design generation, latency

mitigation, and shared resource management for heterogeneous systems, most require substantial
engineering trade-offs, lack flexibility, or introduce prohibitive complexity. Twine, Zipper, and
Overpass offer minimally invasive yet highly effective alternatives, addressing critical pain points
with practical, scalable solutions. Collectively, they represent a meaningful advancement toward
democratizing heterogeneous hardware design, making it more accessible, efficient, and sustain-
able for future systems.
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CHAPTER 7

Future Directions in Heterogeneous System Design

While this dissertation addresses key challenges in the heterogeneous design process and demon-
strates significant performance improvements, the landscape of heterogeneous system design is
vast, with many open challenges remaining. This chapter outlines potential future research direc-
tions, beginning with a discussion of this dissertation’s limitations in § 7.1. Unlike the limitations
discussed in Chapters 3–5, which are specific to the respective solutions, this section considers
broader limitations within the heterogeneous systems research domain.

Sections 7.2–7.4 present future opportunities from multiple perspectives: §7.2 highlights key
system properties—such as security and reliability—that merit further investigation; §7.3 explores
emerging design methodologies driven by Artificial Intelligence (AI), particularly Large Language
Model (LLM)s; and §7.4 discusses new technologies and design targets not covered in this disser-
tation.

7.1 Limitations

Given the rapidly evolving landscape of computing technologies and the breadth of heterogeneous
design, this dissertation has several limitations:

• Security Concerns: This work does not address the security implications of heterogeneous
integration. As components may originate from different vendors, establishing mutual trust
and ensuring overall system correctness become significantly more complex.

• Design Space Assumptions: The dissertation assumes a fixed set of components and inter-
connect topology, focusing on integration challenges. However, the wide variety of compo-
nent choices and interconnect topologies inherent to heterogeneous design can yield drasti-
cally different trade-offs. This broader design space is not explored here.

• Emerging Technologies: Although there have been promising advances in wireless com-
munication and advanced packaging techniques, these technologies were not mature or
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widespread at the time of writing. As such, their potential impact on heterogeneous sys-
tem design is not deeply explored.

• Memory Coherence Models: This work either enforces coherence through software or
assumes non-overlapping data access. The challenge of integrating components that support
different memory coherence and consistency models remains an open problem.

7.2 Multifaceted Properties of Heterogeneous Systems

7.2.1 Security

In homogeneous systems, the entire chip is often treated as a single trusted domain. As a result,
on-chip data does not typically need encryption between components. In contrast, heterogeneous
systems involve components from different vendors and potentially varying levels of trust, making
it infeasible to assume a secure, unified trust boundary.

Techniques like Sequestered Encryption [23] and its verification framework [148] aim to min-
imize the trust footprint, allowing only a subset of hardware to handle sensitive data securely.
However, these approaches can introduce performance overheads. Striking a balance between se-
curity guarantees and system performance will be critical for the viability of secure heterogeneous
systems.

7.2.2 Reliability

Heterogeneous designs often incorporate components fabricated using different process nodes and
materials, connected via advanced packaging and interconnect technologies. This diversity in-
creases the risk of manufacturing defects and operational variability. A deeper understanding of
failure modes and the development of cost-effective reliability mitigation techniques will be crucial
to enabling widespread adoption.

7.3 AI-Assisted Design Methodologies

AI has started to affect our daily lives profoundly. A recent study [28] shows that individuals can
improve their productivity when paired with LLMs. Although AI has not yet become pervasive in
hardware design life cycles, it has the potential to disrupt and improve our approach to heteroge-
neous design.
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7.3.1 AI as Design Tools

LLMs have shown significant potential in automating software development, but hardware design
presents unique challenges. Much of it is proprietary, hardware-centric, and constrained by ge-
ometric and timing requirements—domains not well-represented in public datasets used to train
current models.

A rigorous evaluation of AI tools in the context of heterogeneous hardware design could help
bridge this gap. Moreover, new approaches are needed to translate between the human-readable
inputs that LLMs process and the structural, geometric nature of hardware designs.

7.3.2 AI as Evaluation Methods

Fast design iteration is vital in heterogeneous systems, but accurately evaluating it through syn-
thesis and simulation remains time-consuming. Recent works [164, 50, 165] have explored using
deep learning models to directly predict performance, power, and area characteristics from design
descriptions.

While promising, these techniques remain imprecise, sometimes with errors as high as
70% [165]. Future research should focus on improving the accuracy and generalizability of these
prediction models to support more reliable and efficient design space exploration.

Another aspect of heterogeneous designs that is hard to evaluate is the ease of integration into
the ecosystem and the programmability. Usually, it would take years of trial and error in the field
to find out and improve these qualitative properties of a design. A rapid iteration of this process
with the help of AI would significantly reduce the friction between development and deployment.

7.4 Emerging Design Targets and Technologies

7.4.1 Chiplet-Based Architectures

Chiplet-based architectures offer a promising alternative to monolithic designs, particularly as ret-
icle limits constrain chip sizes. These architectures require efficient inter-chiplet communication
to achieve high performance. However, communication overheads can significantly impact latency
and power consumption.

Automated tools for exploring chiplet topologies, interconnect strategies, and data routing poli-
cies could help mitigate these challenges and unlock the full potential of chiplet-based systems.
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7.4.2 Unified Memory Access Across Coherent and Incoherent Agents

As heterogeneous systems increasingly integrate CPUs and accelerators on a shared memory sub-
strate, new challenges arise in maintaining consistent and efficient memory access. CPUs typically
rely on strong, hardware-enforced coherence, while accelerators may use software-managed or
relaxed coherence models to optimize performance.

Designing memory systems that can support both models efficiently—–and ensuring correct-
ness and performance under this hybrid paradigm—–remains an important area for future work.
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CHAPTER 8

Conclusion

This dissertation addresses significant challenges associated with designing high-performance het-
erogeneous hardware systems. The central contribution lies in streamlining the complexities of
heterogeneous system design, focusing specifically on automating the generation of modular hard-
ware, reducing communication overhead, and optimizing resource allocation within heterogeneous
architectures. This dissertation compiles three complementary efforts that help developers over-
come the challenges at various stages of developing a heterogeneous architecture from scratch,
as illustrated in Figure 8.1. Specifically, each of the three efforts addresses one of the burning
problems in designing heterogeneous hardware: the tremendous complexity of generating hetero-
geneous designs when reconfiguring and reusing modules to construct IPs, high communication
overhead between components when connecting IPs to form dies, and ineffecient sharing of re-
sources between compute dies on a single chip. Collectively, these efforts enhance the efficiency,
feasibility, and flexibility of heterogeneous systems, marking substantial progress in both the the-
oretical and practical aspects of computer architecture research.

The first part of this dissertation introduces Twine, a language extension designed to auto-
mate and simplify modular hardware design, thereby significantly reducing the complexity associ-
ated with manually integrating heterogeneous components. Twine standardizes control interfaces,
thereby increasing the reusability of hardware modules, accelerating iterative design, and improv-
ing productivity. The evaluation results clearly indicated Twine’s efficacy in facilitating rapid
design generation, reducing code complexity, and improving design productivity. These outcomes
offer system designers a robust methodology to explore design spaces efficiently, reducing engi-
neering overhead while improving hardware design quality.

In the second part, we identified and addressed the critical problem of high communication
overhead between host processors and accelerators—–a bottleneck significantly impeding hetero-
geneous system performance. To tackle this, Zipper was developed, incorporating novel latency-
tolerant bus optimization techniques that exploit the locality and parallelism inherent in many
applications. Zipper’s approach allows heterogeneous systems to maintain high performance with-
out extensive redesign or complex compiler interventions. Evaluation through comprehensive case
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Figure 8.1: A high-level summary of the contributions of this dissertation matched with the corre-
sponding challenges addressed by the solutions proposed in this dissertation.

studies on real FPGA-based systems demonstrated up to 8x performance improvements, with less
than 5% hardware overhead. These results validate Zipper’s potential to profoundly enhance sys-
tem efficiency, enabling previously infeasible system configurations and reinforcing the practicality
of heterogeneous system deployments.

The third major contribution of this dissertation, Overpass, targets inefficiencies in commu-
nication resource allocation within heterogeneous systems. Overpass introduces a flexible inter-
connect architecture featuring dynamic bandwidth management and distributed resource alloca-
tion strategies, effectively minimizing resource contention and interference among heterogeneous
components. Empirical evaluations indicated that Overpass significantly enhances overall system
throughput, achieving up to 35% performance improvement, costing less than 0.3% area overhead.
This approach provides system designers with a powerful mechanism to optimize interconnect
resources adaptively, improving both system responsiveness and scalability.

The limitations of this dissertation are summarized at the end of this dissertation. Built on the
findings and the limitations, this dissertation discusses future directions for optimizing and imple-
menting high-performance heterogeneous designs to bridge the gap between ideas and realities.
The principle that unites these ideas is effectively sharing design and performance information
across the heterogeneous components during design time and runtime. Such constructive discus-
sions extend the value of this dissertation and benefit the computer architecture community.

Across the three distinct yet complementary contributions presented in this dissertation, and
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through the exploration of future research directions, a unifying theme emerges: the pursuit of
making hardware design more accessible, scalable, and flexible. By reducing the friction that tra-
ditionally burdens the creation of complex systems, the solutions proposed here—–Twine, Zipper,
and Overpass—–empower developers to fully exploit the potential of heterogeneous architectures.
Yet the reach of these methodologies is not confined to heterogeneity alone. The foundational
principles of modular composition, latency tolerance, and distributed resource management ad-
dress systemic challenges inherent to modern hardware design. As systems continue to scale in
complexity, even within homogeneous environments, these approaches will become indispensable
tools for sustaining innovation. Thus, the ideas set forth in this dissertation not only advance the
state of the art in heterogeneous system design but also lay critical groundwork for a new era of
flexible, high-performance, and architecturally diverse computing.
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