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Introduction - Motivations

Multiple motivations to get location information about someone, i.e. Ads
service based on geolocation or espionage etc.

Roadblocks to get those information: more and more restricted access control
and permission granting process.

A Stanford team extracted location information through power consumption
information (PowerSpy, Y. Michalevsky, USENIX “15).



Introduction - Problems

After three years, new questions arise:

(1)

(3)

A change in threat model due to Android 6.0 upgrade (Doze execution) and
8.0 upgrade (restriction on background service)

Availability under more conditions: geo-condition and network condition.

A hole in their research: Had both GPS and Cellular on when collecting
reference profile but did not discuss which has major effect.



Introduction - Achievements

(1) Reproduced their research in Ann Arbor and re-evaluated the threat model

(2) Extended the attack to add one more scenario based on our findings.

(3) Fixed the hole in their research by providing evidence that network
condition have more effect on power consumption changes over GPS.



Threat Model - Requirements

For the attack in general, the following requirements need to be met:

(1) Pre-knowledge about the victim’s frequent visit areas or routes. Be able to
extract the fingerprints of the targeting routes shortly before or after the
attack.

(2) Trick the victim to have the app running in the foreground during the
attack. Also, the victim does not have any long-time power consumption
disruptive activity.



Threat Model - Qutdoor

For outdoor tracking:

Pre-knowledge about victim’s carrier. Traveling distance is long (more varieties)
and travels in a relatively high speed (more dramatic changes).

We are able to:

(1) Distinguish which route the victim has taken
(2) Real-time tracking or record the power information and recover the
location later.



Threat Model - Indoor

For indoor tracking:

Have and only have wifi network on (airplane mode or Android pad)

We are able to:

Distinguish which route the victim has taken



Background

How does location affect signal strength?

e Distance to the base station
e Signal obstacles
e Reflectors

In one particular location, signal strength is almost unchanged because base
stations, signal obstacles, and reflectors remain stationary
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Background

e Communication at a poor signal location can lead to the increase of power
consumption, compared to a good signal location
e Power consumption information along one road is influenced by the

direction of movement as well
o Hysteresis



Background

Fix a hole left in the original research:

In order to fingerprint different segments of a route, we need to have both GPS
and network on. However, we also need to prove that it is the network that
introduces the most varieties.



Background

Based on our tests, the phone in idle state with all network connection and GPS
off have a standard deviation of about 130 in the power profile.

Route 1 Sample 1 | Route 1 Sample 2 | Route 2 Sample 1 | Route 2 Sample 2
Cellular Only 231.14 253.96 241.47 239.66
GPS Only 164.16 133.13 150.14 110.66

Route 1 Sample 1 | Route 1 Sample 2 | Route 2 Sample 1 | Route 2 Sample 2
Wifi Only 190.39 253.85 290.70 271.84
GPS Only 160.62 104.63 120.61 101.45

Standard deviation of the power profile under different conditions



Background

Standard deviation of power in idle state with all connection and GPS turned off
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Background
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Background
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Background
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Background

e There are significantly more varieties introduced by the network
connection than those introduced by GPS, if GPS has any effect on power
profile varieties.



Background

e Stable signal strength in one particular location

e Poor signal =>the increase of power consumption

e Hysteresis & the direction of movement

e Cellular/Wi-Fi module v.s. GPS module
Conclusion:

e Power consumption may reveal location information



Methodology

Two tasks:

e Route distinguishability
o Classification
o ldentify the route along which a user is traveling

e Real-time tracking



Route Distinguishability

e Feature selection: power traces (time series)
e Classification algorithm: k-NN (k=1)



Route Distinguishability

e Feature selection: power traces (time series)

o Length
o Time

e Classification algorithm: k-NN (k=1)

How to measure the similarity/distance between any two power traces?



Route Distinguishability

e Dynamic Time Warping (DTW)
o Tolerate misalignment of power traces
o Handle time or speed variants

e Normalization before classification
o Handle issues like different power baselines and variability

X; — mean(X;)

X; =

1 = argmin DTW(Y, X;)

i€[1,n]




Real-time Tracking

e Tracking via Dynamic Time Warping
o Use Subsequence DTW algorithm

Algorithm 1 Tracking algorithm
locked < false
while target moving do
loc[i], score < estimateLocation()
d <+ getDistance(loc[i], loc[i — 1])
if locked and d > MAX_DISP then
locli] « loc[i — 1]
end if
if score > THRESHOLD then
locked + true
end if
end while




Real-time Tracking

e Tracking via Dynamic Time Warping
o Use Subsequence DTW algorithm

e Tracking via Optimal Subsequence Bijection

Algorithm 1 Tracking algorithm
locked + false
while target moving do
loc[i], score < estimate Location()
d <+ getDistance(loc[i], loc[i — 1])
if locked and d > MAX_DISP then
locli] « loc[i — 1]
end if
if score > THRESHOLD then
locked <+ true
end if
end while




Experiments - Data Collection

Device: Moto X4
OS: Android 8.0
Carrier: Google

Environment:
o Outdoor, taking bus
o  Outdoor, walking
o Indoor, walking



Experiments - Data Collection
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Experiments - Data Collection

Device: Moto X4
OS: Android 8.0
Carrier: Google

Environment:

o Outdoor, taking bus

o  Outdoor, walking

o Indoor, walking
Network:

o  Cellular only

o  Wi-Fionly

o  Mixed (cellular + Wi-Fi)

Table 2: Sample number of each combination

Route Cellular Only | Wifi Only Mixed
bbaits_to_central 6 Not Applicable 3
bbaits_to north 6 ' Not Applicable 3
north route_1 6 \ 6 |6
north route_2 6 | 6 6
indoor_route_1 6 | 6 6
indoor _route 2 6 [ 6 6




Experiments - Route Distinguishability
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Figure 5: Outdoor + Bus. Class 1 stands for bbaits_to_central, and class 2 for
bbaits_to_north.
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Experiments - Route Distinguishability
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Figure 6: Outdoor + Walk. Class 1 stands for north_route_1, and class 2 for north_route_2



Experiments - Route Distinguishability
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Experiments - Real-Time Tracking
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(a) Location estimation error.| Route: bbaits-to-central |(b) Error histogram.

Figure 9: Estimation errors for motion-model tracking.



Experiments - Real-Time Tracking
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Experiments - Real-Time Tracking
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Experiments - Real-Time Tracking
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Experiments - Real-Time Tracking
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Experiments - Real-Time Tracking
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Discussion - Strength and Weakness M

Comparing to the Original Work

Strength:

(1) Fixed the hole of network vs GPS in their work.
(2) Take power traces once a time.
(3) Extend attack scenarios

Weakness:

(1) Lack of difference devices.
(2) Lack of routes



Discussion - Limitations

(1) Different carriers and change of base station configurations.

(2) Unable to track indoor.

(3) Interference of GPS and other noises.



Conclusion

The threat model has changed significantly. However, information is still leaked
out during the reproduction, which implies no defense has been deployed on
either hardware level or system level.

Furthermore, we find that such attack is also available under indoor and
WiFi-only condition. Such finding does not only extend the threat model but
also draws attention to what else may be leaked through power consumption
information.
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