
EECS 470 Final Project
Group 1

Shibo Chen, Zhen Feng, Chin-wei Hsu, Yueying Li, Wenhao Peng

Outline

● Overview
● Design and Analysis

○ Branch
○ Reservation Station
○ Execution
○ DCache
○ LSQ

● Conclusion

Branch Resolver

Conditional Branch:
Tournament Predictor

Unconditional Branch:
Return?
1. Return Address Stack
2. Branch History Table
3. Speculatively Return on Reg

Not Return?
1. Branch History Table
2. Speculatively Jump on Reg

333% Prediction Rate Increase On Average

We decide to use 32-entry Branch Predictor
and BHT

Early Branch Resolution for instruction fetch

Instruction Fetch Unit ROB

Completion Unit

Without this feature

head

tail

mispredict

Sry…
Fetch the this one plz…

No problem,
But plz wait 10 cycles…

Early Branch Resolution for instruction fetch

Instruction Fetch Unit ROB

Completion Unit

With this feature

head

tail

mispredict

Sry…
Fetch the this one plz…

You probably want to
fetch this one

No problem,
Here you are…

4% overall performance boost

Reservation Station + FUs

RS Design choices

• generic RS unit
• Every types of instruction can be put in any RS unit
• 8 units. Increase from 8 to 16 not improve IPC. 8 shows 25% shorter clock

period after synthesize

• Issue logic
• Issue as instruction types : branch > ld or st > mult > alu

• Prevent CDB structure hazard
• Decrease issue number according to how many load or or multiplier will

complete next cycle, other instructions will finish in one cycle

EX design choice

• 1 ld or st address calculator : goes into LSQ

• 1 branch calculator

• 2 4 stage pipeline multiplier

• 3 alu

• Calculate how many mult will complete next cycle from 3rd stage in
multiplier

• Get if load will complete from LSQ

• At most 3 instruction will complete in one cycle

Data Cache

Design choices

•

Reality

• DCache lies on the critical path across the processor
• Data from memory needs to find a best place to settle

• Higher associativity gives diminishing CPI returns
• Yet it adds to the load on memory bus, potentially increases CLK period

• Went with 2-way set associative
• Although 4-way does give a somewhat better CPI (within 10% at best)

LSQ

Dispatch
• ST put into SQ when dispatch

• Move tail
• Set valid bit

• Only 1 LD allowed (no LQ, no speculate)
• Give age to RS when dispatch
• ld_busy to tell RS don’t issue LD
• LD has to be in-order (if age is different)

• SQ size = 8
• We found that it rarely is full
• Compare 64-bit addr is heavy so we don’t want to make the SQ too large
• If it is about to full (empty < 3), then tell dispatch to stall

rob_idx addr value valid addr_ready

SQ
structure

EX stage
• When ST comes in

• Find the entry with same rob_idx
• Set addr, value, addr_ready
• Complete in 1 cycle

• When LD comes in
• First set ld_busy_next = 1, save ld_addr and other info for completion
• If (ld_busy)

• First check if all SQ addr between its age and head are ready
• If ready

• Find matched addr: forward the value and complete, total 2 cycles
• No matched: ask D$ and wait until it comes back

• If D$ hits: D$ need 1 more cycle, so total 3 cycles
• If D$ misses: needs many cycles

Retire and mispredict
• ROB tells how many ST should be retire

• Retire up to 1 ST each cycle
• Give addr and value to D$

• If branch mispredict
• tail_next = head + retire_num
• Clear ld_busy
• Ignore the comeback D$ valid until next time when LSQ ask D$ to load.

Conclusion and Recommendations
● 3-way superscalar
● 11.3 ns
● average IPC: 0.947

● Critical Path: LSQ <-> Memory.
○ Try to add more registers
○ Avoid large unstaged combinational logic

Work assignment
● Shibo Chen: Branch, ICache, Pipeline, ROB, Debugger
● Zhen Feng: Reservation Station, EX and FU, Pipeline
● Chin-wei Hsu: LSQ, Pipeline, Debugger, RS test, MapTable and

Freelist
● Wenhao Peng: Script, Pipeline, ROB test, DCache, EX and FU,

CDB
● Yueying Li: Dispatch, DCache, RS test, Branch, Pipeline

Thank you for listening.
Any question?

