EECS 470 Final Project

Group 1
Shibo Chen, Zhen Feng, Chin-wei Hsu, Yueying Li, Wenhao Peng

Outline

e Overview
o Design and Analysis

O

o O O O

Branch

Reservation Station
Execution

DCache

LSQ

e Conclusion

I

<
-

ROB

l "1 File
A

EX

3 ADD
2 Mult
1LD
1BR

Reg

 FreeL.ist
Y _
»| BP — J T
l Y l
' v
> Insn RS |
Prﬁch Buffer |~ 8 > 32
32 Lines
Memory i 1 i
\ vy I
D$
S—— »|2-way NPC < »|MapTab. |« rchMap{
asso. -
A
\i
LSQ
8-sper.

A A A

A 3-way superscalr out-of-order MIPS R10K CPU

Branch Resolver

Conditional Branch:
Tournament Predictor

Unconditional Branch:

Return? Not Return?
1. Return Address Stack 1. Branch History Table
2. Branch History Table 2. Speculatively Jump on Reg

3. Speculatively Return on Reg

333% Prediction Rate Increase On Average

Branch Pradiction Rate with ncremental Modules

100.00%
90.00%
20.00%
70.00%
50.00%
50.00%
40.00%
30.00%
20.00% ' i
10.00%

No Prediction < Only Tournamant 3ranch 2redictor ® T8P-BHT ®Cur Dasign|TBP - BHT + Return Stack|

We decide to use 32-entry Branch Predictor
and BHT

Different & of Entri

S

14

120 00%%
22000%

2 "0
=00 V0%t

80.00°%%
£0.00%3

60.003%

40.00%%

20.00%

5 @16t €32 @54 @°1:¢

Branch Resolution for instruction fetch

mispredict

Early Branch Resolution for instruction fetch

You probably want to
fetch this one

\ o
,\“

mispredict

With t

4% overall performance boost

IPC Anzlysis of Early Branch Resolution for Instruction Feich

=Nithout Partial Early Branch Resolution ®Cur design —Difference

Branch Prediction Analysis of Early Branch Resolution for
Instruction Fetch

120.00%
100.00%
80.00%

€000 -
4000
20.00%
C.0C%

-20.00%

am o mmps W
= e

-50.0C%

#'without Partial Early 3ranch Resclution ®Our 2ssign —Difference

Reservation Station + FUs

RS Design choices

* generic RS unit
* Every types of instruction can be put in any RS unit

* 8 units. Increase from 8 to 16 not improve IPC. 8 shows 25% shorter clock
period after synthesize

* |ssue logic
* Issue as instruction types : branch > |d or st > mult > alu

* Prevent CDB structure hazard

* Decrease issue number according to how many load or or multiplier will
complete next cycle, other instructions will finish in one cycle

EX design choice

*11ld or st address calculator : goes into LSQ
* 1 branch calculator

* 2 4 stage pipeline multiplier

*3alu

* Calculate how many mult will complete next cycle from 3™ stage in
multiplier

* Get if load will complete from LSQ
* At most 3 instruction will complete in one cycle

Data Cache

Design choices

« 2N set associative with LRU policy
* N is a tuning knob that allows faster clocks or higher hit rate

* Write-through and write-on-allocate
* For easy data structure: always coherent with memory

* Invalid load address masking
* A bandpass filter allowing only valid addresses through

* Invalid load requests will be flushed by branch mispredict
* Returned deadbeef as data to LSQ
* Saves many cycles and prevents unnecessary eviction

Reality

* DCache lies on the critical path across the processor
* Data from memory needs to find a best place to settle

* Higher associativity gives diminishing CPI returns
* Yet it adds to the load on memory bus, potentially increases CLK period

* Went with 2-way set associative
 Although 4-way does give a somewhat better CPI (within 10% at best)

LSQ

Dispatch

o ST put into SQ when dispatch rob_idx | addr | value | valid

addr_ready

e Move tail

¢ Set valid bit

e Only 1 LD allowed (no LQ, no speculate)

e Give age to RS when dispatch

e |[d_busy to tell RS don’t issue LD

e LD has to be in-order (if age is different) sQ

o SQ size = 8 structure

e We found that it rarely is full
e Compare 64-bit addr is heavy so we don’t want to make the SQ too large
e |f it is about to full (empty < 3), then tell dispatch to stall

EX stage

e When ST comes in
e Find the entry with same rob_idx
e Set addr, value, addr_ready
e Complete in 1 cycle

e When LD comes in
e First set Id_busy next =1, save Id_addr and other info for completion
e |f (Id_busy)
e First check if all SQ addr between its age and head are ready
e If ready
e Find matched addr: forward the value and complete, total 2 cycles
e No matched: ask DS and wait until it comes back
e |f DS hits: DS need 1 more cycle, so total 3 cycles
e |f DS misses: needs many cycles

Retire and mispredict

e ROB tells how many ST should be retire

e Retire up to 1 ST each cycle
e Give addr and value to DS

e If branch mispredict
e tail_next = head + retire_num
e Clear Id_busy
e Ignore the comeback DS valid until next time when LSQ ask DS to load.

Conclusion and Recommendations

3-way superscalar
11.3 ns
average |IPC: 0.947

Critical Path: LSQ <-> Memory.

o Try to add more registers
o Avoid large unstaged combinational logic

Work assignment

« Shibo Chen: Branch, ICache, Pipeline, ROB, Debugger

« Zhen Feng: Reservation Station, EX and FU, Pipeline

o Chin-wei Hsu: LSQ, Pipeline, Debugger, RS test, MapTable and
Freelist

o Wenhao Peng: Script, Pipeline, ROB test, DCache, EX and FU,
CDB

o Yueying Li: Dispatch, DCache, RS test, Branch, Pipeline

Thank you for listening.
Any question?

